### Imaging with Micado at the E-ELT

Renato Falomo INAF – Observatory of Padova, Italy

### WORKSHOP: Imaging at the E-ELT 29 May 2009, Garching

Resolved stellar population in Virgo (high SB)

Detailed View of high redshift galaxies

FP7-N4 – Wide field imaging at the E-ELT – Garching 2009 May 29

## MICADO - Main characteristics

| Wavelength range | : (0.6)-0.8                  | to    | 2.5 mic               | Ι, Ν  | /, J, H, Ks |
|------------------|------------------------------|-------|-----------------------|-------|-------------|
| Field of View    | : 53 x 53 a                  | arcse | ec                    |       |             |
| Pixel scale      | : 3 mas                      |       |                       |       |             |
| PSF              | : FWHM                       | 6(J)  | , 10(Ks)              | ) ma  | S           |
|                  | : Strehl                     | 0.0   | 15(l) 0. <sup>-</sup> | 13(J) | 0.47(Ks)    |
|                  | : EE(10mas) 0.10(J) 0.22(Ks) |       |                       |       |             |

### Overall Throughput 40 % Telescope + instrument + detector



# MICADO - Expected performance

### AB mag limits for isolated point sources



J(AB) = 30 in 5h (S/N=5)

### K(AB) = 29.5 in 5h (S/N=5)

### **Resolved Stellar Populations in Distant Galaxies**



SFH from analysis of stellar distribution on the CMD using stellar evolution theory

Best diagnostic from MS TOs where different luminosities sample different stellar ages, but old TOs are very faint

Old SPs can be sampled on the bright RGB, at ~ 7 mags brighter, a gain in volume of a factor of ~  $15 \ 10^6$ 

SCIENCE CASE FOCUSSES ON DERIVING SFH FROM THE INTRINS. BRIGHTEST PORTION OF THE CMD

Probe as much as possible distant SP

### **The Goal of Resolved Stellar Populations**

VIRGO cluster ( DM = 31 )

The closest rich cluster of galaxies

### **THE METHOD**

Simulation of a Stellar Population with ages between 0 and 12 Gyr and metallicity between 0.02 and 1 times solar (IMF by Kroupa) Code ZVAR (Bertelli et al. 92 + updates)



#### Selected Areas in the CMD in order to:

- Sample specific AGE ranges
- Minimize effects of photometric errors
- Include enough objects for statistics



In each area:



from Stellar Evolution Greggio 2002, ASPC 274 444 Counting stars in selected boxes GIVES STELLAR MASS IN THE SPECIFIC AGE RANGE

### MICADO - The science case AETC

### Simulation and testing: possible observation



MICADO FoV

M99 spiral galaxy in Virgo cluster

### MICADO - The science

Resolved stellar population in distant galaxies

#### Simulation and testing

Stellar population : constant SFR (Age 0 to 12 Gyr)  $FoV = 3x3 \operatorname{arcsec} (0.003 \times FoV)$ Simulated CMI Distance module = 31 (Virgo cluster) -10All stars with M(J) < -3.5 (Vega mag) AGB -8 Case A BSG 70000 stars M(J) [vega] -6 RGB Average SB :  $\mu(K) \sim 18$ -4-2 J(AB) <28.5 1.5 0 0.5 (J - K)

# MICADO - Expected performance

### Instrument parameters

| Collecting area         | m <sup>2</sup> | 1360 |
|-------------------------|----------------|------|
|                         |                |      |
| Telescope throughput    |                | 0.7  |
|                         |                |      |
| AO throughput           |                | 0.80 |
| Instrument throughput   |                | 0.60 |
| Total throughput        |                | 0.35 |
| read out noise          | e-             | 5    |
| instrumental background | e-/s           | 0.1  |
| pixel size              | mas            | 3    |

# Simulation and testing: NEW Maory PSF

- Six LGS
- Seeing 0.6 arcsec
- J 2.98 mas
- K 5.3 mas
- •SR = 0.6 (K)
- Central 3 arcsec (constant PSF)



### Resolved stellar population in distant galaxies

Simulation and testing: Maory PSF



70000 stars

FoV = 3x3 arcsec

MICADO: J filter – 5 h

## MICADO - The science

### Resolved stellar population in Virgo galaxies

### Simulation and testing: Maory PSF



Central FoV 0.9x0.6 arcsec

MICADO: J filter – 5 h

Simulation and testing : Photometric analysis

### Comparison of simulated vs observed data

Photometry performed by L. Bedin @ STScl without any knowledge of the simulated data

### **RESULTS:**

- Catalogue of detected objects
- X, Y positions
- magnitude in J and K bands
- photometric additional parameters
- analysis NOT yet optimized

#### Simulation and testing : Photometric analysis

by L. Bedin @ STScl

Comparison of simulated vs observed magnitude

K band



#### Simulation and testing : Photometric analysis

Photometric accuracy < 0.1 mag for J<28.5



#### Simulation and testing : Photometric analysis



### Completeness

Completeness > 90% up to J(AB) ~ 28.5 > 70% up to J(AB) ~ 29.5

#### Simulation and testing : Photometric analysis

Calibrated observed CMD from macthed stars

J(AB) <28.5



### Simulation and testing : Photometric analysis



#### Simulation and testing : Photometric analysis



Simulation and testing : Photometric analysis

### Recovering the stellar mass in selected boxes

|     | Simulated | Observed | Difference% |
|-----|-----------|----------|-------------|
| RSG | 13        | 13       | 0           |
| BSG | 49        | 61       | +25 %       |
| AGB | 26        | 26       | 0           |
| RGB | 1901      | 1828     | -4 %        |

Full numbers are x 300 since this is a small fraction of Micado FOV

Near-IR images by MICADO @ E-ELT are able to determine the STELLAR MASS of different populations in galaxies of the Virgo cluster

## NIR Imaging Camera in the next decade

MICADO @ E-ELT (42m) WIRC @ TMT (30m) NIRCam @ JWST (6m) Imaging @ GMT



### NIRCam - JWST

Main properties

Main mirror (JWST): 6.5m Resolution : 90 mas (K) Platescale : 0.0317 "/pixel FoV : 2.3' x 4.6' Wavelength range: 0.6 – 5 micron Background : ~ Zodiacal light









### Micado@ELT vs NIRCam@JWST

| K filter                               | MICADO    | NIRCam    |
|----------------------------------------|-----------|-----------|
| (2.1 micron)                           | E-ELT     | JWST      |
| Background<br>(ABmag)                  | 15-15.5   | ~23       |
| PS Sensitivity<br>(5h; S/N=5)<br>ABmag | 29.5 - 30 | 30 – 30.5 |
| Spatial Resolution<br>(FWHM)<br>mas    | ~10       | 90        |
| Field of View<br>arcmin <sup>2</sup>   | ~0.3      | ~10       |

The study of stellar populations: Crowding limits MICADO@E-ELT vs NIRCam@JWST (K filter, FoV 3x3 arcsec )



#### MICADO E-ELT

**NIRCam JWST** 

The study of stellar populations: Crowding limits MICADO@E-ELT vs NIRCam@JWST (K filter, FoV 0.9x0.6 arcsec )



# Resolved stellar populations in Virgo galaxies

### Micado@E-ELT

offers a unique capability to investigate the stellar population in the *in crowded fields of distant galaxies (up to Virgo cluster)* 







Example 1



M(V) = -21Re = 5 kpc

Redshift: 1-5

SB dimming  $(1+z)^4$ 

Size evolution helps a lot to detect high z galaxies

Include k-correction & filter tranfsormation

Galaxy template  $\rightarrow$  simulated images

SIMULATION





SIMULATION

### Size 0.3 "





#### SIMULATION



Z = 4 size = 0.1"

### Spiral galaxy at z = 2 Re 5kpc (0.3")H band -- 5h SIMULATION





### NIRcam@JWST

### ELT view of high redshift galaxies

MICADO @ E-ELT will be able to characterize the properties (incl. morphology ) of high redshift galaxies and study their environments.

Near-IR (rest-optical) observations yield direct comparison with the local Universe (in the optical)





The E-ELT high (10mas) angular resolution (*combined with high sensitivity*) is the Key capability for unique imaging studies in stellar and extragalactic astrophysics.