

Imaging at TMT

Luc Simard

"Imaging at the E-ELT Workshop" ESO-Garching, May 29, 2009

The Importance of Adaptive Optics

Seeing-limited observations and observations of resolved sources

Sensitivity $\propto \eta D^2$ (~ 14 × 8m)

Background-limited AO observations of unresolved sources
Sensitivity $\propto \eta S^2 D^4 \quad (\sim 200 \times 8m)$

• High-contrast AO observations of unresolved sources Sensitivity $\propto \eta \frac{S^2}{1-S} D^4$ (~ 200 × 8m)

Sensitivity = 1/time required to reach a given s/n ratio η = throughput, S = Strehl ratio. D = aperture diameter

Instrument	λ (μm)	Field of view/ Slit length	Spectral resolution	Science Cases
InfraRed Imager and Spectrometer (IRIS)	0.8 – 2.5 0.6 – 5 (goal)	<3'' IFU >15''imaging	> 3500 5-100 (imaging)	 Assembly of galaxies at high z Black holes/AGNs/Galactic Center Resolved stellar populations in crowded fields
Wide-field Optical spectrometer and imager (WFOS)	0.31 – 1.0	>40 arcmin ² >100 arcmin ² (goal) Slit length>500″	1000- 5000@0.75′′ slit >7500 @0.75′′ (goal)	 IGM structure and composition at 2 < z < 6 Stellar populations, chemistry and energetics of z > 1.5 galaxies
InfraRed Multislit Spectrometer (IRMS)	0.95 – 2.45	2 arcmin field, up to 120'' total slit length with 46 deployable slits	R=4660 @ 0.16 arcsec slit	 Early Light Epoch of peak galaxy building JWST follow-ups
Deployable, multi-IFU, near-IR spectrometer (IRMOS)	0.8 – 2.5	3′′ IFUs over >5′ diameter field	2000-10000	 Early Light Epoch of peak galaxy building JWST follow-ups
Mid-IR AO-fed Echelle spectrometer (MIRES)	8 – 18 4.5 – 28 (goal)	3′′ slit length 10′′ imaging	5000-100000	 Origin of stellar masses Accretion and outflows around protostars Evolution of gas in protoplanetary disks
Planet Formation Instrument (PFI)	1 – 2.5 1 – 5 (goal)	1 ^{′′} outer working angle, 0′′.05 inner working angle	R≤100	 10⁸ contrast ratio (10⁹ goal) Direct detection and spectroscopic characterization of exoplanets
Near-IR AO-fed echelle spectrometer (NIRES)	1 - 5	2′′ slit length	20000-100000	 IGM at z > 7, gamma-ray bursts Local Group abundances Abundances, chemistry and kinematics of stars and planet-forming disks Doppler detection of terrestrial planets around low-mass stars
High-Resolution Optical Spectrometer (HROS)	0.31 – 1.1	5″ slit length	50000	 Doppler searches for exoplanets Stellar abundance studies in Local Group ISM abundance/kinematics IGM characteristics to z~6
"Wide"-field AO imager (WIRC)	0.8 – 5.0	30" imaging field	5-100	 Precision astrometry (e.g., Galactic Center) Resolved stellar populations out to 10 Mpc

Instrument	λ (μm)	Field of view/ Slit length	Spectral resolution	Science Cases		
InfraRed Imager and Spectrometer (IRIS)	0.8 – 2.5 0.6 – 5 (goal)	<3'' IFU >15''imaging	> 3500 5-100 (imaging)	 Assembly of galaxies at high z Black holes/AGNs/Galactic Center Resolved stellar populations in crowded fielde 		
Wide-field Optical spectrometer and imager (WFOS)	0.31 – 1.0	>40 arcmin ² >100 arcmin ² (goal) Slit length>500″	1000- 5000@0.75′′ slit >7500 @0.75′′ (goal)	 IGM structure and composition at 2 < z < 6 Stellar populations, chemistry and energetics of z > 1.5 galaxies 		
InfraRed Multislit Spectrometer (IRMS)	0.95 – 2.45	2 archin neid, up to 120'' total slit length with 46 deployable slits	R=4660 @ 0.16 arcsec slit	 Early Light Epoch of peak galaxy building JWST follow-ups 		
Deployable, multi-IFU, near-IR spectrometer (IRMOS)	0.8 – 2.5	3′′ IFUs over >5′ diameter field	2000-10000	 Early Light Epoch of peak galaxy building JWST follow-ups 		
Mid-IR AO-fed Echelle spectrometer (MIRES)	8 – 18 4.5 – 28 (goal) Visible. Seeing-Limited ution of gas in protoplanetary disks					
Planet Formation Instrument (PFI)	1 – 2.5 1 – 5 (goal)	0′′.05 inner working angle	R≤100	 contrast ratio (10⁹ goal) Direct detection and spectroscopic characterization of exoplanets 		
Near-IR AO-fed echelle spectrometer (NIRES)	1 - 5	2′′ slit length	20000-100000	 IGM at z > 7, gamma-ray bursts Local Group abundances Abundances, chemistry and kinematics of stars and planet-forming disks Doppler detection of terrestrial planets 		
High-Resolution Optical Spectrometer (HROS)	0.31 – 1.1	5′′ slit length	50000	 Doppler searches for exoplanets Stellar abundance studies in Local Group ISM abundance/kinematics IGM characteristics to z~6 		
Wide -tield AO imager (WIRC)	0.8 – 5.0	30" imaging field	5-100	 Precision astrometry (e.g., Galactic Center) Resolved stellar populations out to 10 Mpc 		

Instrument	λ (µm)	Field of view/	Spectral	Science Cases
InfraRed Imager and Spectrometer (IRIS)	0.8 – 2.5 0.6 – 5 (goal)	<3'' IFU >15''imaging	> 3500 5-100 (imaging)	 Assembly of galaxies at high z Black holes/AGNs/Galactic Center Resolved stellar populations in crowded fields
Wide-field Optical spectrometer and imager (WFOS)	0.31 – 1.0	>40 arcmin ² >100 arcmin ² (goal) Slit length>500″	5000@0.75'' slit >7500 @0.75''	 IGM structure and composition at 2 < 2 < 6 Stellar populations, chemistry and energetics of z > 1.5 galaxies
InfraRed Multislit Spectrometer (IRMS)	0.95 – 2.45	2 arcmin field, up to 120'' total slit length with 46 deployable slits	R=4660 @ 0.16 arcsec slit	 Early Light Epoch of peak galaxy building JWST follow-ups
Deployable, multi-IFU, near-IR spectrometer (IRMOS)	0.8 – 2.5	3″ IFUs over >5′ diameter field	2000-10000	 Early Light Epoch of peak galaxy building JWST follow-ups
Mid-IR AO-fed Echelle spectrometer (MIRES) Planet Formation	8 – 18 4.5 – 28 (goal)	^{3'' slit length} Near-IR, AC	D-assiste	• Origin of stellar masses • Accretion and outflows around protostars volution of gas in protoplanetary disks 1 ⁸ contrast ratio (10 ⁹ goal)
	1 – 5 (goal)	ondo		characterization of exonlanets
Near-IR AO-fed echelle spectrometer (NIRES)	1 - 5	2′′ slit length	20000-100000	 IGM at z > 7, gamma-ray bursts Local Group abundances Abundances, chemistry and kinematics of stars and planet-forming disks Doppler detection of terrestrial planets around low-mass stars
High-Resolution Optical Spectrometer (HROS)	0.31 – 1.1	5″ slit length	50000	 Doppler searches for exoplanets Stellar abundance studies in Local Group ISM abundance/kinematics ISM abareatoristics to z = 6
"Wide"-field AO imager (WIRC)	0.8 – 5.0	30'' imaging field	5-100	 Precision astrometry (e.g., Galactic Center) Resolved stellar populations out to 10 Mpc

Instrument	λ (μm)	Field of view/ Slit length	Spectral resolution	Science Cases
InfraRed Imager and Spectrometer (IRIS)	0.8 – 2.5 0.6 – 5 (goal)	<3" IFU >15"imaging	> 3500 5-100 (imaging)	 Assembly of galaxies at high z Black holes/AGNs/Galactic Center Resolved stellar populations in crowded fields
Wide-field Optical spectrometer and imager (WFOS)	0.31 – 1.0	>40 arcmin ² >100 arcmin ² (goal) Slit length>500″	1000- 5000@0.75′′ slit >7500 @0.75′′ (goal)	 IGM structure and composition at 2 < z < 6 Stellar populations, chemistry and energetics of z > 1.5 galaxies
InfraRed Multislit Spectrometer (IRMS)	0.95 – 2.45	2 arcmin field, up to 120′′ total slit length	R=4660 @ 0.16	Early Light Epoch of peak galaxy building IWST follow-ups
Deployable, multi-IFU, near-IR spectrometer (IRMOS)	0.8 – 2.5	High-Contrast AO		Early Light Epoch of peak galaxy building JWST follow-ups
Mid-IR AO-fed Echelle spectrometer (MIRES)	8 – 18 4.5 – 28	3′′ slit length 10′′ imaging	5000-100000	 Origin of stellar masses Accretion and outflows around protostars
Planet Formation Instrument (PFI)	1 – 2.5 1 – 5 (goal)	1′′ outer working angle, 0′′.05 inner working angle	R≤100	 10⁸ contrast ratio (10⁹ goal) Direct detection and spectroscopic characterization of exoplanets
Near-IR AO-fed echelle spectrometer (NIRES)	1 - 5	2′′ slit length	20000-100000	 IGIVI at 2 > 7, gamma-ray bursts Local Group abundances Abundances, chemistry and kinematics of stars and planet-forming disks Doppler detection of terrestrial planets around low-mass stars
High-Resolution Optical Spectrometer (HROS)	0.31 – 1.1	5″ slit length	50000	 Doppler searches for exoplanets Stellar abundance studies in Local Group ISM abundance/kinematics IGM characteristics to z~6
"Wide"-field AO imager (WIRC)	0.8 - 5.0	30" imaging field	5-100	 Precision astrometry (e.g., Galactic Center) Resolved stellar populations out to 10 Mpc

Instrument	λ (μm)	Field of view/ Slit length	Spectral resolution	Science Cases
InfraRed Imager and Spectrometer (IRIS)	0.8 – 2.5 0.6 – 5 (goal)	<3'' IFU >15''imaging	> 3500 5-100 (imaging)	 Assembly of galaxies at high z Black holes/AGNs/Galactic Center Resolved stellar populations in crowded fields
Wide-field Optical spectrometer and imager (WFOS)	0.31 – 1.0	>40 arcmin ² >100 arcmin ² (goal) Slit length>500″	1000- 5000@0.75′′ slit >7500 @0.75′′ (goal)	 IGM structure and composition at 2 < z < 6 Stellar populations, chemistry and energetics of z > 1.5 galaxies
InfraRed Multislit Spectrometer (IRMS)	0.95 – M	id-infrared,	AO-assis	sted ^{ight} of peak galaxy building follow-ups
Deployable, multi-IFU, near-IR spectrometer	0.8 – 2.5	3″ IFUs over >5′ diameter field	2000-10000	Early Light Epoch of peak galaxy building IWST follow-ups
Mid-IR AO-fed Echelle spectrometer (MIRES)	8 – 18 4.5 – 28 (goal)	3′′ slit length 10′′ imaging	5000-100000	 Origin of stellar masses Accretion and outflows around protostars Evolution of gas in protoplanetary disks
Planet Formation Instrument (PFI)	1 – 2.5 1 – 5 (goal)	0".05 inner working angle, 0".05 inner working angle	R≤100	Or contrast ratio (10° goal) Oirect detection and spectroscopic characterization of exoplanets
Near-IR AO-fed echelle spectrometer (NIRES)	1 - 5	2" slit length	20000-100000	 IGM at z > 7, gamma-ray bursts Local Group abundances Abundances, chemistry and kinematics of stars and planet-forming disks Doppler detection of terrestrial planets around low-mass stars
High-Resolution Optical Spectrometer (HROS)	0.31 – 1.1	5" slit length	50000	 Doppler searches for exoplanets Stellar abundance studies in Local Group ISM abundance/kinematics IGM characteristics to z~6 7
"Wide"-field AO imager (WIRC)	0.8 – 5.0	30" imaging field	5-100	 Precision astrometry (e.g., Galactic Center) Resolved stellar populations out to 10 Mpc

Instrument	λ (μm)	Field of view/	Spectral resolution	Science Cases
InfraRed Imager and Spectrometer (IRIS)	0.8 – 2.5 0.6 – 5 (goal)	<3'' IFU >15''imaging	> 3500 5-100 (imaging)	 Assembly of galaxies at high z Black holes/AGNs/Galactic Center Resolved stellar populations in crowded fields
Wide-field Optical spectrometer and imager (WFOS)	0.31 – 1.0	>40 arcmin ² >100 arcmin ² (goal) Slit length>500″	1000- 5000@0.75′′ slit >7500 @0.75′′ (goal)	 IGM structure and composition at 2 < z < 6 Stellar populations, chemistry and energetics of z > 1.5 galaxies
InfraRed Multislit Spectrometer (IRMS)	0.95 – 2.45	2 arcmin field, up to 120′′ total slit length with 46 deployable slits	R=4660 @ 0.16 arcsec slit	 Early Light Epoch of peak galaxy building JWST follow-ups
Deployable, multi-IFU, near-IR spectrometer (IRMOS)	0.8 – 2.5	3″ IFUs over >5′ diameter field	2000-10000	Early Light Epoch of peak galaxy building IW/ST follow-ups
Mid-IR AO-fed Echelle spectrometer (MIRES)	8 – 18 4.5 – 28 (goal)	3′′ slit length 10′′ imaging	5000-100000	 Origin of stellar masses Accretion and outflows around protostars Evolution of gas in protoplanetary disks
Planet Formation Instrument (PFI)	1 – 2.5 1 – 5 (goal)	1′′ outer working angle, 0′′.05 inner working angle	R≤100	 10⁸ contrast ratio (10⁹ goal) Direct detection and spectroscopic characterization of exoplanets
Near-IR AO-fed echelle	1-5	2'' slit length	20000-100000	 IGM at z > 7, gamma-ray bursts Local Group abundances Abundances, chemistry and kinematics of
spectrometer (NIRES)		Imaging Ca	apabilitie	S poppler detection of terrestrial planets round low-mass stars
High-Resolution Optical Spectrometer (HROS)	0.31 – 1.1	5′′ slit length	50000	Doppler searches for exoplanets Stellar abundance studies in Local Group ISM abundance/kinematics IGM characteristics to z~6
"Wide"-field AO imager (WIRC)	0.8 – 5.0	30'' imaging field	5-100	 Precision astrometry (e.g., Galactic Center) Resolved stellar populations out to 10 Mpc

Nasmyth Configuration: First Decade Instrumentation Suite

Narrow-Field IR AO System (NFIRAOS): TMT's Early-Light Facility AO system

Dual conjugate AO system:

Y METER TELESCOPE

- Order 61x61 DM and TTS at h = 0 km
- Order 75x75 DM at h = 12 km
- Better Strehl than current AO systems

Band	Strehl Ratio				
	SRD (120 nm)	Baseline (177	Baseline + TT		
		nm)			
R	0.313	0.080	0.052		
Ι	0.411	0.145	0.105		
Ζ	0.566	0.290	0.236		
J	0.674	0.424	0.366		
Н	0.801	0.617	0.569		
Κ	0.889	0.774	0.742		

- Can feed three instruments
- Completely integrated system
 - Fast (< 5 min) switch between targets with same instrument
- > 50% sky coverage at galactic poles

A "Rebirth" of Astrometry

O micro-arcsecs in densely populated fields:

- General Relativity at the Galactic center
- Distance to the Galactic center
- Star forming regions: accurate determination of the Initial Mass Function with cluster membership

2 milli-arcsecs in very sparse fields, i.e., where only wavefront sensor guide stars are available:

- Magnetar proper motions to establish velocity imparted during progenitor explosion
- Binary star/planet orbits to measure stellar, compact object and planet masses
- Astrometric microlensing to measure accurate stellar masses
- Gravitational lensing to probe dark matter substructures
- Binary Kuiper Belt Objects

TMT InfraRed Imager and Spectrometer (IRIS)

IRIS Top-Level Requirements

Requirement #	Description	Requirement
[REQ-1-ORD-3740]	Wavelength Range	0.8 – 2.5 µm
[REQ-1-ORD-3745]	Image quality	Aberrations uncorrectable by an order 60x60 AO system should not add wavefront errors larger than 30 nm RMS
[REQ-1-ORD-3750]	Field of View, IFU	Up to 3 arcsec for integral field mode
[REQ-1-ORD-3755]	Field of View, Imaging	15x15 arcsec for imaging mode
[REQ-1-ORD-3760]	Detector Sampling	0.004 arcsec per pixel (Nyquist sampled (λ /2D)) over 4096 pixels for IFU)
[REQ-1-ORD-3765]	Detector Sampling	Plate scale adjustable 0.004, 0.010, 0.025, 0.050 arcsec/pixel for IFU
[REQ-1-ORD-3770]	Detector Sampling	Nyquist sampled (λ /2D) (0.004 arcsec) over 10x10 arcsec for imaging
[REQ-1-ORD-3775]	Detector Sampling	Smaller wavelength coverage ($\Delta\lambda/\lambda \le 0.05$) is acceptable for area coverage equivalent to 128*128 spatial pixels.
[REQ-1-ORD-3780]	Spectral Resolution	R=4000 over J,H,K bands, one band at a time R=5-100 for imaging mode
[REQ-1-ORD-3785]	Throughput	>30%, Not including telescope or NFIRAOS
[REQ-1-ORD-3790]	Instrument background	The instrument should not increase the (inter-OH) background by more than 5% (TBC) over the sum of: inter-OH sky, telescope and NFIRAOS background.
[REQ-1-ORD-3795]	Detector	Detector dark current and read noise should not increase the effective background by more than 5% for an integration time of 2000s.

IRIS Top-Level Requirements

Requirement #	Description	Requirement
[REQ-1-ORD-3740]	Wavelength Range	0.8 – 2.5 μm
[REQ-1-ORD-3745]	Image quality	Aberrations uncorrectable by an order 60x60 AO system should not add wavefront errors larger than 30 nm RMS
[REQ-1-ORD-3750]	Field of View IFU	Up to 3 arcsec for integral field mode
[REQ-1-ORD-3755]	Field of View, Imaging	15x15 arcsec for imaging mode
[REQ-1-ORD-3760]	Detector Sampling	0.004 arcsec per pixel (Nyquist sampled (λ/2D)) over 4096 pixels for IFU)
[REQ-1-ORD-3765]	Detector Sampling	Plate scale adjustable 0.004, 0.010, 0.025, 0.050
[REQ-1-ORD-3770]	Detector Sampling	Nyquist sampled (λ /2D) (0.004 arcsec) over 10x10 arcsec for imaging
[REQ-1-ORD-3775]	Detector Sampling	Smaller wavelength coverage ($\Delta\lambda/\lambda \le 0.05$) is acceptable for area coverage equivalent to 128*128 spatial pixels.
[REQ-1-ORD-3780]	Spectral Resolution	R=4000 over J,H,K bands, one band at a time R=5-100 for imaging mode
[REQ-1-ORD-3785]	Throughput	>30%, Not including telescope or NFIRAOS
[REQ-1-ORD-3790]	Instrument background	The instrument should not increase the (inter-OH) background by more than 5% (TBC) over the sum of: inter-OH sky, telescope and NFIRAOS background.
[REQ-1-ORD-3795]	Detector	Detector dark current and read noise should not increase the effective background by more than 5% for an integration time of 2000s.

WIRC Top-Level Requirements

Requirement Number	Description	Requirement
[REQ-1-ORD-4835]	Wavelength Range	0.8 – 2.5 μm, goal 0.6-5μm
[REQ-1-ORD-4840]	Image Quality	Aberrations uncorrectable by an order 60x60 AO system should not add wavefront errors larger than 30 nm RMS
[REQ-1-ORD-4845]	Field of View	30 arcsec diameter (contiguous, imaged all at once)
[REQ-1-ORD-4850]	Spatial Sampling	Nyquist sampled (λ/2D) (0.004 arcsec)
[REQ-1-ORD-4855]	Spectral Resolution	R= 5-100 (narrow and broad band filters)
[REQ-1-ORD-4860]	Throughput	High; must preserve telescope aperture advantage compared to similar instruments on smaller telescopes
[REQ-1-ORD-4865]	Astrometry	Over the 30arcsec field of view, WIRC shall deliver precise astrometric measurements with at most a 10% degradation of the acheivable performance on NFIRAOS feeding an idealized perfect instrument.
[REQ-1-ORD-4870]	Stability, Flexure	Must allow mosaicing of multiple fields together with no significant loss of image quality or precision.
[REQ-1-ORD-4875]	Background	The instrument and AO system of this configuration shall not increase the inter-OH optical background by more than 15% over sky and telescope background.

WIRC Top-Level Requirements

Requirement Number	Description	Requirement	
[REQ-1-ORD-4835]	Wavelength Range	0.8 – 2.5 μm, goal 0.6-5μm	
[REQ-1-ORD-4840]	Image Quality	Aberrations uncorrectable by an order 60x60 AO system should not add wavefront errors larger than 30 nm RMS	
[REQ-1-ORD-4845]	Field of View	30 arcsec diameter (contiguous, imaged all at once)	
[REQ-1-ORD-4850]	Spatial Sampling	Nyquist sampled (λ/2D) (0.004 arcsec)	
[REQ-1-ORD-4855]	Spectral Resolution	R= 5-100 (narrow and broad band filters)	
[REQ-1-ORD-48	/IRC and I	RIS may be combined Intage	
[REQ-1-ORD-4865]	Astrometry	Over the 30arcsec field of view, WIRC shall deliver precise astrometric measurements with at most a 10% degradation of the acheivable performance on NFIRAOS feeding an idealized perfect instrument.	
[REQ-1-ORD-4870] Stability, Flexure		Must allow mosaicing of multiple fields together with no significant loss of image quality or precision.	
[REQ-1-ORD-4875] Background		The instrument and AO system of this configuration shall not increase the inter-OH optical background by more than 15% over sky and telescope background.	

Motivation for IRIS

Unprecedented ability to investigate objects on small scales.

0.01" @	5 AU	= 36 km	(Jovian's and moons)
	5 pc	= 0.05 AU	(Nearby stars – companions)
	100 pc	= 1 AU	(Nearest star forming regions)
	1 kpc	= 10 AU	(Typical Galactic Objects)
	8.5 kpc	= 85 AU	(Galactic Center or Bulge)
	1 Mpc	= 0.05 pc	(Nearest galaxies)
	20 Mpc	= 1 pc	(Virgo Cluster)
	z=0.5	= 0.07 kpc	(galaxies at solar formation epoch)
	z=1.0	= 0.09 kpc	(disk evolution, drop in SFR)
	z=2.5	= 0.09 kpc	(QSO epoch, $H\alpha$ in K band)
	z=5.0	= 0.07 kpc	(protogalaxies, QSOs, reionization)

Titan with an overlayed 0.05" grid (~300 km) (Macintosh et al.)

M31 Bulge with 0.1" grid (Graham et al.)

High redshift galaxy. Pixels are 0.04" scale (0.35 kpc). Barczys et al.)

Keck AO images

Io with TMT/IRIS

Resolved Stellar Populations in Virgo

THIRTY METER TELESCOPE

Figure 5: Simulations of a 5 x 10 arcsec² field in a Virgo cluster spheroid at a location with a surface brightness in V of 22 magnitudes $\operatorname{arcsec}^{-2}$. The right hand panel shows the result of observing with IRIS + NFIRAOS on the TMT with a three hour exposure time. The substrate of faint objects are stars on the RGB, which can be used to measure the MDF in this galaxy. The left hand panel shows the same field but observed with an 8 metre telescope with an AO system having the same Strehl ratio for 3 hours. Note that only the brightest AGB stars are detected with an 8 metre aperture.

Point Source Sensitivities

Spectroscopy for S/N per spectral channel of 10, between OH lines, assuming an aperture of 2 (λ/D)

S/N ~10	Filter	Scale (mas)	Exp. Time (secs)	Number of Frames	Magnitude (AB)
	J	4	900	4	25.7
	Н	4	900	4	25.8
	K	4	300	12	24.2

- Imager for a S/N of 100 assuming an aperture of 2 (λ /D)

22

S/N~100	Filter	Exp. Time (secs)	Number of Frames	Magnitude (AB)
	J	900	4	27.3
	Н	900	4	26.2
	К	900	4	25.5

InfraRed Multi-slit Spectrometer (IRMS aka MOSFIRE)

IRMS + NFIRAOS

IRMOS (deployable MOAO IFUs) deemed too risky and too expensive for first light

- => IRMS: clone of Keck MOSFIRE; Step 0 towards IRMOS
 - Multi-slit NIR imaging spectro:
 - 46 slits,W:160+ mas, L:2.5"
 - Deployed behind NFIRAOS
 - 2' field
 - 🗢 60mas pixels
 - EE good (80% in K over 30")
 - Spectral resolution up to 5000
 - Full Y, J, H, K spectra

Imager as well

IRMS Top-Level Requirements

Requirement #	Description	Requirement
[REQ-1-ORD-3840]	Wavelength Range	The instrument shall operate over the Y, J, H, K bands.
[REQ-1-ORD-3845]	Wavelength Coverage	The instrument shall cover an entire band at a time.
[REQ-1-ORD-3850]	Image quality	Aberrations uncorrectable by an order 60x60 AO system should not add wavefront errors larger than 30 nm RMS
[REQ-1-ORD-3855]	Field of View	Shall utilize the 2 arcminute NFIRAOS technical field.
[REQ-1-ORD-3860]	Spectral Resolution	R>3000 with a 120 milliarcsecond slit
[REQ-1-ORD-3865]	Throughput	> 35%, not including telescope or NFIRAOS
[REQ-1-ORD-3870]	Imaging mode	Shall provide imaging over the full field of NFIRAOS

Wide Field Optical Spectrometer (WFOS)

THIRTY METER TELESCOPE

R. Bernstein (UCSC, PI), C. Steidel (Caltech, PS), B. Bigelow (UCSC, PM)

WFOS Top-Level Requirements

Requirement #	Description	Requirement
[REQ-1-ORD-3950]	Wavelength Range	0.31 – 1.0μm
[REQ-1-ORD-3955]	Image quality: Imaging	\leq 0.2 arcsec FWHM over any 0.1µm wavelength interval (including contributions from the telescope and the ADC at z=60°)
[REQ-1-ORD-3960]	Image quality: Spectroscopy	≤ 0.2 arcsec FWHM at every wavelength
[REQ-1-ORD-3965]	Field of View	40.5 arcmin ² . The field need not be contiguous.
[REQ-1-ORD-3970]	Total Slit Length	≥ 500 arcseconds
[REQ-1-ORD-3975]	Spatial Sampling	< 0.15 arc-sec per pixel, goal < 0.1 arc-sec
[REQ-1-ORD-3980]	Spectral Resolution	R = 500-5000 for a 0.75 arc-sec slit, 150-7500 (goal)
[REQ-1-ORD-3985]	Throughput	\geq 30% from 0.31 – 1.0µm, or at least as good as that of the best existing spectrometers
[REQ-1-ORD-3990]	Sensitivity	Spectra should be photon noise limited for all exposure times >60 sec. Background subtraction systematics must be negligible compared to photon noise for total exposure times as long as 100 Ksec. Nod and shuffle capability in the detectors may be desirable
[REQ-1-ORD-3995]	Wavelength Stability	Flexure at a level of less than 0.15 arc-sec at the detector is required.

THIRTY METER TELESCOPE

TM

B

Requirement #	Description	Requirement
[REQ-1-ORD-3950]	Wavelength Range	0.31 – 1.0μm
[REQ-1-ORD-3955]	Image quality: Imaging	\leq 0.2 arcsec FWHM over any 0.1µm wavelength interval (including contributions from the telescope and the ADC at z=60°)
[REQ-1-ORD-3960]	Image quality: Spectroscopy	≤ 0.2 arcsec FWHM at every wavelength
[REQ-1-ORD-3965]	Field of View	40.5 arcmin ² . The field need not be contiguous.
[REQ-1-ORD-3970]	Total Slit Length	≥ 500 arcseconds
[REQ-1-ORD-3975]	Spatial Sampling	< 0.15 arc-sec per pixel, goal < 0.1 arc-sec
[REQ-1-ORD-3980]	Spectral Resolution	R = 500-5000 for a 0.75 arc-sec slit, 150-7500 (goal)
[REQ-1-ORD-3985]	Throughput	\geq 30% from 0.31 – 1.0µm, or at least as good as that of the best existing spectrometers
[REQ-1-ORD-3990]	Sensitivity	Spectra should be photon noise limited for all exposure times >60 sec. Background subtraction systematics must be negligible compared to photon noise for total exposure times as long as 100 Ksec. Nod and shuffle capability in the detectors may be desirable
[REQ-1-ORD-3995]	Wavelength Stability	Flexure at a level of less than 0.15 arc-sec at the detector is required.

IGM Tomography with WFOS

THIRTY METER TELESCOPE

⁽R. Cen, Princeton U.)

Given that TMT+WFOS will go ~ 2.5 mag deeper than 8-10m class telescopes, and background UV-bright galaxies will then become usable beacons, the surface density of sightlines on the sky for intergalactic medium tomography will be ~200x higher.

This means that one will be able to probe *individual* galaxy haloes through multiple sightlines.

Stellar Archeology in the Local Universe

- TMT will use multi-object spectroscopy of thousands of stars to map the dynamical states of stellar populations:
 - This will allow us to test theories of structure formation on sub-galactic scales.
 - By comparison with models, one can infer the merger history of nearby galaxies.

N-body simulations of satellite accretion (TMT WFOS-HIA team, Bullock & Johnstone 2005).

WFOS-MOBIE Imaging: White Dwarfs in Open Clusters

Planet Formation Instrument (PFI)

PFI Top-Level Requirements

Requirement Number	Description	Requirement	
[REQ-1-ORD-4510]	Wavelength Range	1-2.5μm, one band at a time. Goal is 1 - 4μm.	
[REQ-1-ORD-4515]	Field of View	0.7 arcsec radius, goal 2 arcsec radius (applies to all requirements for PFI)	
[REQ-1-ORD-4520]	Planet Detection Contrast (I<8) @ Inner Working Angle with 5x rms noise, for a two hour integration	10 ⁻⁸ @ 50 mas, goal 10 ⁻⁹ @ 100 mas	
[REQ-1-ORD-4525]	Planet Detection Contrast (H<10) @ Inner Working Angle with 5x rms noise, for a two hour integration	10 ⁻⁶ @ 30 mas, goal 2x10 ⁻⁷ @ 30 mas	
[REQ-1-ORD-4530]	Spatial Sampling	Nyquist sampled at H band, goal J band.	
[REQ-1-ORD-4535]	Spectral Resolution, full FOV, IFU	R = 50, goal 100	
[REQ-1-ORD-4540]	Spectral Resolution, partial FOV, IFU	R = 500, goal 1000	
[REQ-1-ORD-4545]	Polarimetry	Simultaneous dual channel to detect polarized light (e.g. from scattering off circumstellar dust) at a level of 1% of the residual stellar halo, and measure absolute polarization to an accuracy of 10%	

PFI Imaging Contrast

PFI Polarimetry

THIRTY METER TELESCOPE

Figure 18: Radiative transfer model of a young planet in an optically thick circumstellar disk. The companion has a contrast of $\Delta H = 10$ mag, representing a <10 Myr planet. This disk has a radius of 50 AU with an inner hole at 5 AU and a Hill-sphere wide gap at the radius of the planet (30 AU). The disk inclination is -66 degrees, such we are viewing the underside of the disk. The distance is 150 pc. The left hand panel shows the total intensity and the left shows the polarized fraction with the orientation of the electric vector indicated. The concentric polarization vectors and unpolarized core clearly show that the source at 7 o'clock is self-luminous and not just a blob of dust.

MIRES Top-Level Requirements

THIRTY METER TELESCOPE

TM

B

Requirement Number	Description	Requirement
[REQ-1-ORD-4400]	Wavelength Range	8µm- 18µ, goal 4.5-28µm
[REQ-1-ORD-4405]	Field of View of acquisition camera	10 arcsec, Nyquist sampled at 5µm (0.017 arcsec pixels) This camera is assumed to be needed for accurate positioning of the science object onto the diffraction- limited slit. The images should be of scientific quality (low distortion, good uniformity, etc). This camera can work in K band.
[REQ-1-ORD-4410]	Field of view of science camera	A goal is to incorporate a science camera with the same sampling and field as above, operating in the N band, at least, to be used with narrow band filters. As an additional goal, this camera shall be used as the acquisition camera.
[REQ-1-ORD-4415]	Slit Length	3 arcsec, sampled at 0.04 arcsec/pixel. Slit or IFU
[REQ-1-ORD-4420]	Spectral Resolution	5000≤R≤100,000 (with diffraction-limited slit). R=50-100K is the prime scientific region Single exposures at R=100,000 should give continuous coverage over the orders imaged, 8 - 14µm
[REQ-1-ORD-4425]	High Throughput	High priority
[REQ-1-ORD-4430]	Instrument background	The instrument and AO system should not increase the N band background by more than 15% over natural sky + telescope background (assume 5% emissivity at 273K).
[REQ-1-ORD-4440]	Sampling	17 mas / pixel Discussion: Maximum detector size is likely to be bounded by 2Kx2K
[REQ-1-ORD-4445]	Sensitivity	Sensitivity should be limited by photon statistics in the background, and not limited by any systematic errors, in observations up to an 8 hr long integration

MIRES Top-Level Requirements

THIRTY METER TELESCOPE

TM

B

Requirement Number	Description	Requirement
[REQ-1-ORD-4400]	Wavelength Range	8μm- 18μ, goal 4.5-28μm
[REQ-1-ORD-4405]	Field of View of acquisition camera	10 arcsec, Nyquist sampled at 5µm (0.017 arcsec pixels) This camera is assumed to be needed for accurate positioning of the science object onto the diffraction- limited slit. The images should be of scientific quality (low distortion, good uniformity, etc). This camera can work in K band.
[REQ-1-ORD-4410]	Field of view of science camera	A goal is to incorporate a science camera with the same sampling and field as above, operating in the N band, at least, to be used with narrow band filters. As an additional goal, this camera shall be used as the acquisition camera.
[REQ-1-ORD-4415]	Slit Length	3 arcsec, sampled at 0.04 arcsec/pixel. Slit or IFU
[REQ-1-ORD-4420]	Spectral Resolution	5000≤R≤100,000 (with diffraction-limited slit). R=50-100K is the prime scientific region Single exposures at R=100,000 should give continuous coverage over the orders imaged, 8 - 14µm
[REQ-1-ORD-4425]	High Throughput	High priority
[REQ-1-ORD-4430]	Instrument background	The instrument and AO system should not increase the N band background by more than 15% over natural sky + telescope background (assume 5% emissivity at 273K).
[REQ-1-ORD-4440]	Sampling	17 mas / pixel Discussion: Maximum detector size is likely to be bounded by 2Kx2K
[REQ-1-ORD-4445]	Sensitivity	Sensitivity should be limited by photon statistics in the background, and not limited by any systematic errors, in observations up to an 8 hr long integration

MIRES Imaging: Protoplanetary Disks

Figure 2.2.3.1 The perturbations of planets on dust in debris disks produce signatures in the dust morphology that can be used to detect planetary systems. This numerical simulation of the brightness distribution of dust particles for our Solar system (Liou & Zook 1999) shows an asymmetric ringlike structure at the orbit of Neptune. Shown is the MIRES beam at 20 μ m for a distance of 50 pc. MIRES has the resolution to measure similar morphology and deduce outer planetary system architectures.

MIRES Imaging: Debris Disks

12.3 µm 18.3 µm G 40 **MIRES** bean **MIRES** beam 20 0 -20-40 60 80 40 80 100 40 60 100 Offset to SW (AU)

arcsec

arcsec

arcsec

arcsec

arcsec

- Merging galaxies often hidden behind gas and dust forming stars need mid-IR to penetrate extinction
- High spatial resolution separates black hole region from host galaxy contamination
- TMT/MIRES will put JWST observations in context as done with Spitzer and today's 8m telescopes

- At z=0.5, JWST resolution = 1.5 kpc and TMT = 330 pc

www.tmt.org/foundation-docs/index.html

- Detailed Science Case
- Science-based Requirements Document
- Observatory Requirements Document
- Observatory Architecture Document
- Operations Concept Document
- TMT Construction Proposal

Acknowledgments

The TMT Project gratefully acknowledges the support of the TMT partner institutions. They are the Association of Canadian Universities for Research in Astronomy (ACURA), the California Institute of Technology and the University of California. This work was supported as well by the Gordon and Betty Moore Foundation, the Canada Foundation for Innovation, the Ontario Ministry of Research and Innovation, the National Research Council of Canada, the Natural Sciences and Engineering Research Council of Canada, the British Columbia Knowledge Development Fund, the Association of Universities for Research in Astronomy (AURA) and the U.S. National Science Foundation.