VISTA & VISTA Surveys

Gavin Dalton

VISTA Instrument Scientist

With input from VISTA, CASU, and the ESO public surveys

team

- VISTA Facility
 - Integrated system approach
- Current Status
 - Some lessons from commissioning
- Survey Outlines
- Timeline
- Some considerations for wide-field E-ELT imaging

Integrated System Approach

- detector array modules (infrared and CCD)
- filter barrel
- Iens barrel
- baffle tube
- pressure window
- cryostat vessel
- electronics rack
- telescope structure and mirrors

A Particular

IR Focal Plane

• 16 arrays, 67 Mpix = 0.60 deg² = 2150 arcmin² on-pixels , 0.34 arcsec/pixel.

- 6 offset `pawprints' gives $1.5 \ge 1.0 \text{ deg}^2$ `tile', every star covered by ≥ 2 pawprints.

Wavefront Sensors

- Now in final stages of commissioning
 - · Verification and internal acceptance
 - Handover: VPO -> QMUL -> STFC -> ESO commences end 6/09
- Full end-to-end operability demonstrated
- System behaviour stable, optics wellaligned
- Image quality appears to be excellent
- End-end throughput (J) estimated at 64%

Some Images

LMC (one chip, October 2008)

0.7" PSF at 35° ZD

Some Images

2008 TC3 (1s frames)

2 hours before impact...

Shows potential of wide field IR for NEO detection

M42, JHKs November 2008

...but this is just one chip!

Science & Technology Facilities Council

Some lessons...

- Trefoil aberration on secondary...
 - F/1 systems are hard!
 - M1 correction appears acceptable
- Focus gradient seen with high order WFS...
 - Useful to have multiple positions (beamsplitter in filter wheel)
 - Telescope out of alignment (mechanical and optical axes of M1 don't coincide)

Focus Gradient (HOWFS)

October 2008 Difference between focus measured at corner- and nearaxis-HOWFS locations (nm of Z_4

Focus Gradient (HOWFS)

March 2009 Curve is fit to October data. Points are after remounting M1 and camera following Ag coating and camera intervention

Science & Technology

acilities Council

Focus Gradient (HOWFS)

March 2009 Same plot after lateral M1 position adjustment and recalibration of M2 positioning Further

repositioning of M1 in May 2009 corrected this

residual

Some lessons...

- Trefoil aberration on secondary...
 - F/1 systems are hard!
 - M1 correction appears acceptable
- Focus gradient seen with high order WFS...
 - Useful to have multiple positions (beamsplitter in filter wheel)
 - Telescope out of alignment (mechanical and optical axes of M1 don't coincide)
- M1 correction for trefoil yields 'phantom' astigmatism at WFS locations...

Early indication of peculiar behaviour of the M2 tilt measurements

2 component model with a true field corrector misalignment term and a 'phantom' 2-theta term from the gradient of the M1 trefoil correction

Some lessons...

- Trefoil aberration on secondary...
 - F/1 systems are hard!
 - M1 correction appears acceptable
- Focus gradient seen with high order WFS...
 - Useful to have multiple positions (beamsplitter in filter wheel)
 - Telescope out of alignment (mechanical and optical axes of M1 don't coincide)
- M1 correction for trefoil yields 'phantom' astigmatism at WFS locations...
- Some residual tilt between camera and telscope (expected, but hard to measure until other effects understood tilted camera-telescope shim in procurement)
- Integrated system approach provides excellent calibration to the instrument focal plane

VST and VISTA will image the equivalent of more than $1^{1}/_{2} \times full$ southern sky each year

Summary of Public Surveys												
Survey synergy	Area	Filters and limits (5 σ AB mag.)										
	(deg²)	u'	g	Hα	r'	i'	Z	Υ	J	Η	Ks	NB
I. KIDS ^{2,8}	1500+	24.8	25.4		25.2	24.2	-	-				-
2. ATLAS 1,5	4500	22.7	22.9		22.9	22.0	21.2					
3.VPHAS+ 7	1800	22.5	23.2	23.2	23.2	22.5			E			
4. Ultra-VISTA	0.73				.	-		26.7	26.6	26.1	25.6	24.1
5.VHS ^{1,2,8}	20000	-						21.2	21.1	20.6	20.0	-
6.VIDEO	12				-	-	25.7	24.6	24.5	24.0	23.5	-
7.VVV ³	520					•	22.5	21.9	21.1	19.6	20.0	
8.VIKING I	1500	-		4	-	-	23.1	22.3	22.1	21.5	21.2	
9.VMC	184	-						23.3	23.0		22.9	

VHS: VISTA Hemisphere Survey (PI: R. McMahon / Cambridge)

+ES+ © +

Science Case:

- catalogue of low-mass and nearby stars and merger history of our Galaxy
- \bullet properties of dark energy via the large-scale structure to z \sim 1
- search for extreme redshift quasars (z > 7)

VHS

- VHS ATLAS (5000 deg²): divided ~evenly between N & S Galactic caps 60 sec. exposures in Y, J, H, and Ks
- VHS Dark Energy Survey (4500 deg²): SGC 120 sec. exposures in J, H, and Ks
- VHS GPS (8200 deg²): Galactic Plane Survey (excl. VVV) 60 sec. exposures in J, and Ks

VVV: VISTA Variables in Via Lactea (PI: D. Minniti / Univ. Catolica)

Science Case:

- multi-epoch survey: Catalogue variable objects + high proper motion stars
- create a 3-d map of the Galactic bulge (RR Lyrae stars)
- cluster evolution (350 open and 33 globular clusters)
- ages of stellar populations and steller IMF

520 deg² of Galactic bulge and adjacent plane

VVV

Constraints:

 seeing <= 0.8 arcsec / CLR / any moon applicable for both bulge and disk

Strategy:

 mock first year covers entire bulge/disk area (520 deg²) in: all 5 filters (Z, Y, J, H, and K_s) => concatenation then when complete repeat tiling in K_s at 5 further epochs with a 3 day time interval between successive epochs => time link

		Z	Y	J	н	Ks
depth:	bulge	21.6	20.9	20.6	19.0	18.0
	disk	21.5	20.7	20.2	19.3	18.3
DIT:	bulge	10	10	6	4	4
	disk	20	20	10	10	10
$nDIT \times nJitter \times nPAW:$	bulge	lx2x6	lx2x6	2x2x6	lx2x6	lx2x6
	disk	lx2x6	lx2x6	2x2x6	2x2x6	2x2x6
Total Exp. (sec):	bulge	120	120	144	48	48 x 6 epochs
	disk	240	240	240	240	48 x 6 epochs

VIKING: VISTA Kilo-Degree INfrared Galaxy Survey (PI: W. Sutherland / Cambridge)

Science Case:

• key complement to VST/KIDS (9 bands => very accurate photo z's: $\Delta z/(1+z) \sim 0.03$ to z = 1)

 with KIDS: weak lensing and baryonic oscillations detection of very high redshift QSO's (z>7), ultra-cool brown dwarfs, galaxy evolution and morphology, and clustering

1490 deg² covering all KIDS fields in: Z, Y, J, H, Ks

VIKING

Constraints:

- seeing <= 1.0 arcsec & THN
- | Tile => 2 OB's:

OB1: Z,Y,J1 (dark or grey)

OB₂: J₂, H, Ks (any moon)

 OB1 and OB2 should be observed within one month of each other (addressed using p2pp groups)

Strategy:

- locate field centers along *tramlines* of constant declination (matching those of KIDS)
 => 2 arcmin overlaps (N/S); I arcmin overlaps (E/W)
 - => 49 x 10 tiles (SGP) and 61 x 9 tiles (NGP) x 1.435 deg² per tile = 1490 deg²

filter	Z	Y	J	Н	Ks
depth (vega 5 sigma)	22.6	21.7	21.3	20.2	19.4
DIT	50	50	25	10	10
$nDIT \times nJitter \times nPAW$	lx5x6	lx4x6	2x2x6	5x3x6	6x4x6
Total Exp (sec)	1500	1200	600	900	1440

VISTA Survey of the Magellanic Cloud System (PI Cioni)

- Goal: Study the evolution of stellar population and history of galaxy interaction
- Outline: Observe LMC, SMC, Bridge, and Stream in YJK_s. Total area 184 deg².
- Constraints: Moon: any, transparency: THN, seeing: 1/0
- Strategy:
 - Concatenation: in YJK_s
 - Time link: 15 different epochs, 15 days interval between each epoch, 5 days interval validity for each OB 2 × Y + 2 × J + 11 × K_s
- First year: Only 100 deg² on LMC, 10 × 10 deg² rectangle centered on 05:23:34, -69:45:22.

VISTA Deep Extragalactic Observations (VIDEO) (PI Jarvis)

- Goal: Galaxy and structure evolution out to z = 4.
- ▶ Overview: $2 \times 4.5 \text{ deg}^2 + 1 \times 3 \text{ deg}^2$ fields in ZYJHK_s
 - XMM-LSS (02:18:00, -05:00:00), high priority
 - ELAIS-S1 (00:34:00, -43:00:00), medium priority
 - CDF-S (03:22:00, -27:00:00), low priority
- Z (dark), J (grey), and K_s (bright) have higher priority than H (bright) and Y (grey). Implemented via different OB priorities in OB groups.
- Seeing: 0'.'8, tranparency: THN
- First year: Finish one tile before moving to the next, i.e., only one tile in each field will be observed in year 1.

Ultra-VISTA (PI Dunlop)

- Goal: Study the Universe between z = 6.5 and z = 10
- $1 \times 1.5 \text{ deg}^2$ on COSMOS field in YJHK_s and NB1185
- 3 vertical offsets will give 4 ultra-deep columns, 1 horizontal offset will fill the field

- Each offset is one single pawprint 1 h OB
- Constraints: Y and NB: dark, others: any, seeing: 0.'8, transparency: CLR
- First year: This survey only gains depth, not area. Ensure homogenous progress

VISTA SV

- SV will take place after handover of telescope beginning of 2009.
- A total of 11 nights to be divided up into two mini– surveys Galactic and Extragalactic – about 50 hrs obs. each.
- The two mini surveys should not overlap with the VISTA public survey projects
- Test the whole end-to-end system crucial to optimize QC parameters & spot checks for telescope and instrument monitoring
- Raw data will be publicly available.
- Data will be reduced with the VISTA Data Flow System (VDFS - CASU & WFAU) and AstroWISE. Reduced data products will be publicly available from SAF

VISTA SV

- 1. Extragalactic mini survey: deep survey of the stellar halo in a nearby spiral galaxy
- 2. Galactic mini survey: the star formation region in Orion
 - 1. Goals:

Detect faint stellar halo Detect and characterize the metallicities of satellites in the field Detection of streams Detection of GCs/UCDs Narrow band imaging to map opacity And star formation at z=0.84

NGC 5907 18'.2 x 27'.7 11.35 hrs BBRO image and DSS

VISTA SV - Target galaxy NGC 4945

- NGC 4945 13 05 27 -49 28 05 (J2000); m-M = 27.63, D=3.9 Mpc
- Detecting red giant branch stars in the diffuse stellar halo and streams using deep broad band Z and J
- Satellites of M31 and MW are manly dSphs, within 300 kpc of the MW disk μ_v=23-26 mag arcsec-², V=-8.5 - 13, 11 Gyrs old, metal poor ([Fe/H]=-1.7).
- For such a stellar population the absolute magnitude at the tip of the RGB is → Z=-4.51;J=-4.94
- 5. mz=23.3, mj =22.9

VISTA FOV ~ 102 x 68 kpc²

VISTA SV - Observing strategy

- In addition to brad band imaging we carry out a search for Halpha emitters in the background of NGC 4945 at 0.84 using the narrow band filter NB 118
- Goals: probe the opacity of the stellar halo and the star formation rate at this redshift,
- Observing strategy: 1 tile only, in Z,J, NB118.
- Exposure times: Narrow band 6 hrs, Broad band, see below:

Band	Abs. magnitude	App. magnitude	Nobs	Tot Exp. time	S/N	S/N
	at RGB tip	at RGB tip			(seeing = 0.8'')	(seeing = 1.0'')
Z(MR)	-4.76	23.0	2	3.2h	10	8
Z (MP)	-4.51	23.3	4	6.3h	10	9
J (MR)	-5.65	22.1	4	5.9h	10	8.5
J (MP)	-4.94	22.9	15	22.1h	10	8

Band	DIT	N_{dit}	Njit	Npaw
Z	60	3	5	6
J	35	6	4	6

Survey	Image Size (TB)	Catalogue size (TB)	Total (TB) over 5 years	Total (TB) per period
Ultra-VISTA	0.0034	0.0069	0.01	0.001
VHS	36.2	2.37	38.6	3.9
VIDEO	0.027	0.018	0.05	0.005
VVV	2.4	7.4	9.8	1.0
VIKING	3.4	0.45	3.9	0.4
VMC	1.3	0.44	1.7	0.2
	Tot	als:	54	5.4

- Big cameras are easy, right?
 - 5' FOV @f/18 on E-ELT is 1.1m diameter
 - GLAO limited -> 0.1" pixels -> 350µm pixels
 - 10x focal reducer -> f/1.8
 -> 35µm pixels
 - Looks better, but could we build it...?

F/5 field splitter, shown for a 7' FOV... individual cameras now about VISTA sized...

100µm pixels, 4x1024x1024 arrays...

-see later talk!