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ABSTRACT   

Since the last decade, most of the large infrared instruments are kept at operating cryogenic temperature using 

mechanical cryo-coolers. Generally Gifford MacMahon Closed Cycle Coolers or Pulsed Tubes are doing this duty. 

These coolers are well dimensioned to keep the instrument and the detector at a sufficiently low operating temperature. 

Using the only cooling power provided by the steady state mechanical cryo-coolers would lead to several days for the 

initial cooling down. Therefore an additional cooling has to be used to allow a reasonable cooling time. 

The present paper describes the liquid nitrogen continuous flow cooling system developed at ESO for ISAAC. During 

the past years, this system has also been used successfully for a number of VLT instruments (CRIRES, HAWK-I..). 

After a short comparison with the more common technique using an instrument internal tank, we list in detail the various 

developments which have been required to get the continuous flow working in a reliable and efficient way. 

This paper also presents the advantages making this technology as a potential very attractive way to replace definitively  

mechanical coolers in most of the cases.  
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1. INTRODUCTION  

In the early time of the Infra-Red astronomy most of the instruments were directly packed into a standard commercial 

Dewar with in most of the cases, the optical assembly directly bolted on the bottom plate of the nitrogen tank. This 

practice changed slowly during the last decades when reliable closed cycle cooler systems became available. Actually, in 

most of the cases, the mechanical coolers have replaced the liquid nitrogen and the liquid helium to maintain the 

instruments and the detectors at cryogenic operating temperature. In most of the cases the power needed to cool the 

instrument in a reasonable time is an order of magnitude higher than the power required to keep then cold.  Some 

additional cooling is then required during the original cool-down phase. This paper describes such a cool-down system 

based on a continuous open circulation of liquid nitrogen. 

This principle is used at ESO since years where a series of instruments and test facilities has been built around this 

technique. We will analyze it in the specific case of CRIRES the CRyogenic Infrared Echelle Spectrograph for the VLT. 

With a total cold mass of 570 kg and the goal to reach a cryogenic “test” temperature after 24 hours this was the most 

challenging instrument to benefit of this system.  

2. PRINCIPLE 

This technology is using a very simple principle which is very similar to the technique which is generally used in most of 

the fluid cooling systems. A cold fluid is forced into a circuit including a number of heat exchangers. The heat 

exchangers are strongly bolted to the object to be cooled-down. In this particular case, most of the difficulties come from 

the nature of the coolant and to the fact that it is used at the phase (liquid/gas) transition point.  

Figure 1 shows a general view of the cryogenic system of CRIRES. In addition to the various temperature control loop 

systems, this shows a schematic representation of the cooling circuit with the various components. This diagram includes 

also the safety overpressure valves which are necessary in order to protect the cooling lines in case of evaporation of 

trapped gas during warm-up.  

 

*jlizon@eso.org; phone 0049 8932006780; fax 0049 8932006457; www.eso.org 

http://www.eso.org/


 

 
 

 

This figure shows also practically the process used for pre-cooling. The liquid nitrogen, provided from an external 

storage tank, circulates in a series of heat-exchanger before to be collected in single tubes by the end collector. The 

temperature measured at this point is used to control the pre-cooling valve which, when opening, leaves new LN2 

flowing into the circuit. 

 

 

Figure 1: Cryogenic design of CRIRES 

The design presented above shows the complete cryogenic infrastructure of CRIRES. It shows the closed cycle coolers 

system (3 cold heads Coolpower 10MD from Leybold  Oerlikon powered by 2 Coolpack 6000 compressors) used to keep 

the instrument at cryogenic operating temperatures. It shows also the thermal stabilization system used keep the 

temperature of sensitive dispersive components within 1 mK. Even if all of this is irrelevant for the present discussion, it 

illustrates the complexity of CRIRES. 

3. DESIGN AND REALISATION 

Figure 2 below shows 3D views of the cooling circuit used for the pre cooling of CRIRES. The liquid nitrogen is fed to 

the circuit via the inlet connection (IN). This is a special bayonet connection for vacuum insulated transfer line. Special 

splitters (S) are used to divide the cooling circuit in 5 sub-circuits. This provides a well distributed cooling power and 

allows an easy dismounting of the various sub-systems. The various sub-circuits are clearly shown (various colours) on 

the left view of figure 2. On this general view we can also clearly see the last heat exchanger (EGH) which is used to 

warm-up the gas to ambient temperature before leaving the vacuum envelope. This component, which is directly 

attached to the inside wall of the vacuum vessel is actively controlled. The pink circuit with 4 heat-exchangers is used to 

cool the pre-dispersion unit. This 120kg unit includes the entrance slit, the pre-dispersion collimator mirror, the pre-

dispersion prism and some additional re-imaging optic. The green circuit is used to cool the 100kg heavy grating unit. 

Two of the five heat exchangers are directly mounted on the rotating grating carrier. The blue/green circuit is cooling the 

main cold structure. 

The right part of figure 2 shows a close on the the main collimator with its two dedicated circuits. Two sub-circuits with 

a total of 12 heat exchangers are used for the cooling of this complex 200kg welded structure housing very accurately the 

three mirrors and the detector mosaic assembly. 
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Figure 2: Cooling circuitry of CRIRES 

3.1 Distributers, splitters 

The design of the splitter and its mounting was one of the first challenges we had to face while implementing this 

technology for the first time. Early testing has shown the strong limitation of a simple manifold system.  During the first 

hours of operation, the turbulences caused mainly by the phase transfer, are such that very few coolant is effectively 

transferred. Figure 3 shows the final optimized design of this component. The right view show the mounting of the in 

and out splitters. Both have a similar design, the exhaust one carries the temperature sensor. The inner one is mounted 

thermally insulated (HGW plates) in order to reach very rapidly the LN2 temperature. 

            

Figure 3: Distribution heads 

3.2 Heat exchanger 

For obvious thermal reasons copper is the optimal material for the heat exchanger. On the other hand stainless steel tubes 

are required for providing optimal interfaces for the connections. Technically the problem has been given to the industry. 

There are some companies with wide range of experience in this type of specific welding. Two different types of 

junctions have been used welding by fusion and silver brazing.  
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Figure 4: Heat exchangers (the left view shows a specific heat exchanger used to cool directly the ball bearing of rotating 

mechanisms, the left view shows our standard heat exchanger) 

All heat exchangers are built following the same principle. The lower base is a massive copper part in which the special 

circulation labyrinth is directly machined. This is closed by a lighter top plate bound by fusion welding. The two 

connection interface tubes are located according to the geometry and the space situation. 

The standard heat exchanger has been well characterized. It provides a cooling power which is progressively decreasing 

with the temperature from 100W at 300K to about 10W at 80K. This performance is also reduced by a 10% factors for 

any additional exchanger added in series to the circuit. Having heat exchanger manufactured out of copper offers also the 

possibility of integrating directly the heater by soldering. In our case we selected the vacuum tight encapsulated heaters 

from thermo-coax and integrate them by silver brazing.  

Figure 5: Mirror cooling arrangement 

Figure 5 shows the special arrangement which has been selected for a cooling of large mirrors. The heat exchangers cool 

simultaneously the mirror and the surrounding surface. The interface with the structure has been carefully designed in 

order to prevent any significant gradient to develop between the mirror and the structure. 

3.3 Connections 

Connect tubes at cryogenic temperature inside a vacuum vessel containing extremely sensitive and expensive optical 

devices can be regarded as technically risky and challenging. The industry offers a series of solution to this problem. For 

smaller diameters (up to 6mm) the standard connection system with double metallic cutting seals (type Swagelock) are 

fully suitable. For larger diameter it was necessary to improve further commercial solution. Figure 6 shows the large 

diameter connector based on the Kenol commercial connector. The implementation of the spring loading system 

guaranty a full tightness even during the original phase of cooling where strong thermal stress are developed.  
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Figure 6: Connection system for large diameter 

4. RESULTS OF CRIRES COOLING 

Figure 7 shows the evolution of various temperatures inside CRIRES during the cool-down. This record shows that most 

of the instrument reaches the temperature of liquid nitrogen after one day.  

Figure 7: CRIRES cool-down 

 

The ESO standard requirement is to cool instruments within 24 hours. This is a reasonable goal and specially valid 

during the development and the testing of the instrument in order to shorten the thermal cycling period. CRIRES is 

operational as high resolution spectrograph only after the optic assembly is perfectly stabilized at 65K.  

Such LN2 cooling system can drastically reduce the cooling time from ambient temperature down to 76K (The boiling 

temperature at 2500m, the altitude of Paranal observatory). A number of additional hours is still required for the last part 
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of the cool-down which is only ensured by the mechanical cry-cooler: 3 Closed Cycle Cooler cold heads. Technical tests 

have been carried out to investigate the possibility of reducing this last phase using a reduction of the boiling pressure in 

the cooling line. As a result a significant reduction of the last period could be gained providing some additional work to 

make it effectively usable without attendance. The use of pumped nitrogen in a continuous flow system implies a few 

conditions which were not considered in the original design. It was still possible to implement a monitoring of the 

temperature to prevent the freezing and clogging of the line. The adaptation of the cross section of the internal lines to 

guaranty an efficient pressure reduction all over the cooling circuit would have been more difficult implement.  

 

5. CONCLUSION, COMPARISON WITH OTHER SYSTEMS  

Considering the pre-cooling of large infrared instruments, this technology has to be compared to the use of LN2 internal 

storage tanks. The continuous flow has the main advantage of a better distribution of the cold and a very effective 

cooling at the strategic points. It also has a clear advantage in the relation of the mass and volume used in the instrument. 

Such system can also be consider as easier to handle on the point of view of safety as no nitrogen is stored inside the 

instrument.  

The numerous connections inside the instrument could be considered as a risk factor although our long experience has 

demonstrate that the use of the proper connectors guaranty an extremely reliable vacuum tightness, even after multiple 

dismounting.  

Even if it looks like a step backward, the use of liquid nitrogen to keep large instruments at cryogenic operating 

temperature is still discussable at a time where we are looking for very stable and quite telescopes to be operated as an 

interferometer. This technology brings some very interesting and attractive answers to this problem. This has been 

verified at ESO in the frame of the reduction of the vibration on the VLT. HAWK-I (the VLT large field Near Infrared 

imager) is now kept at cryogenic operating temperature with the original pre-cooling system. Compare to the traditional 

mechanical coolers this system induces nearly no vibration. Small adaptations can also make this system less sensitive to 

power failure. The last and least is the considerable reduction of power dissipation in the telescope that the use of such 

system would bring compare to traditional mechanical coolers. 
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