

Mark Downing, Robert Hartmann, Sebastian Ihle European Southern Observatory ESO (<u>http://www.eso.org</u>) Max-Plank-Institut Semiconductor Laboratory (<u>http://www.hll.mpg.de/</u>)

7 Nov 2007

Nov 2007

Talk Overview

- Background
- Setup
- Dark Measurement Results
 - ⇒ Bias stability
 - ⇒ Dark Current
 - ⇒ Bright Defects
- Light Measurements
 - ⇒ Photon Transfer Curve
 - ⇔ QE
 - ⇒ PRNU
 - ⇒ Cosmetics
 - ⇒ PSF
- Conclusions

Background

- Contract between ESO and MPE/HLL (pnSensor) for:
 - ⇒ Three Test Runs
 - ⇒ Delivery of engineering and science device
- Report on first Test Run.
- MPE/HLL is a common research facility of the Max-Planck-Institut f
 ür Physik in Muenchen and the Max-Planck-Institut f
 ür extraterrestrische Physik in Garching
- Produce pnCCDs for particle physics and X-ray astronomy
 - ⇒ Large pixel size 36-300um
 - ⇒ Thick 300-500um => >80% QE over 450-950nm
 - ⇒ Low ron of 3e
 - ⇒ Fast read out 1000fps
 - ⇒ High speed clocking non-overlapping aluminum clock lines
- Developed 264x264 51µm square pixel size by 450µm thick pnCCD that is interesting for AO WFS for VLT and ELT.

- 264x264 51um pixel
- 450um thick
- Split frame transfer
- One output amplifier per column
- Total 528 amplifiers
- 1000fps
- RON < 3e</p>
- Integrated with CAMEX
 - ⇒ Gain
 - ⇒ Analog DCS signal processing
 - ⇒ Multiplexing of 132 channel to 1 output

Nov 2007

Provides

- ⇒ Load for CCD output amplifier
- ⇒ Gain stages
- ⇒ Analog DCS that average over several samples
- ⇒ Multiplexer 132column amplifiers to 1 output

Image Format

- Purpose to subtract column to column variations
- Out of four only two are usable

DARK Measurement Results

- 10 biases taken every 10 minutes for several hours.
- Good long term stability
- Poor short term stability up to 200ADU (20e) between successive images.
- Can be improved by overscan subtraction but cause should be investigated.

pnCCD - First Test Results

500

Dark Images

Nov 2007

Dark Current

Amplifier	Frame	Dark	Dark	Bias	
	Rate	Current	Level	Level	
	<u>(Hz)</u>	e-/pix/sec	e-	e-	
Amp Left Lower	100	-4.3287	-0.048	-0.005	
	50	-4.9552	-0.079	0.021	
	20	-1.4866	-0.081	-0.007	
	10	-1.1484	-0.094	0.021	
	5	-1.1994	-0.253	-0.013	
	2	-0.5187	-0.276	-0.017	
	1	-0.3032	-0.316	-0.013	
	0.5	0.0358	0.062	-0.01	
Amp Left Upper	100	-11.2398	-0.238	-0.126	
	50	-10.5436	-0.297	-0.087	
	20	-7.0603	-0.511	-0.158	
	10	-8.8803	-1.013	-0.125	
	5	-10.5697	-2.242	-0.128	
	2	-11.8431	-6.045	-0.123	
	1	-11.7472	-11.875	-0.127	
	0.5	-11.6421	-23.42	-0.135	

 Darks are dominated by drift in the image area at different exposure times thus dark current is difficult to calculate, but for > 50fps, dark current is very low < 1e/pixel.

Bright Defects

Number of Hot Pixels			Brightest Hot Pixels versus frame rate					
Frame	Hot	Hot	Hot	Frame	Hot	Hot	Hot	Hot
Rate	Pixels	Pixels	Pixels	Rate	Pixel	Pixel	Pixel	Pixel
(Hz)	>20e	>10e	>5e	(Hz)	[153,91]	[79,124]	[99,179]	[3,100]
100	0	0	0		e-	e-	e-	e-
50	0	0	0	100	0.12	0.6	0.18	2.0
20	0	0	0	50	1.2	0.85	1.2	4.2
10	0	0	1	20	2.9	2.3	3	11.1
5	0	3	18	10	5	4	3.5	24
2	5	29	638	5	10	10.2	11	47.9
1	30	879	5204	2	25	23	23	121.5
0.5	1258	6312	11967	1	51	44	48	243
				0.5	103	90	110	478

Frame rate > 50Hz, no bright defect.

Hot pixels scale with integration time as expected.

Light Measurement Results

Nov 2007

Photon Transfer Curve

Poor linearity < 200e and >700e

DC Level Varies with Illumination

< 200e the image DC offset level varies with signal and the need to correct

Care with use of Overscan

100

Row numbe

200

PTC Overscan Subtracted

Linearity improved

Nov 2007

Good Gain Uniformity

 Could do analysis without worrying about which amplifier pixel read from.

Nuffber

Ρ

Nov 2007

Lowering Gain, Full Well of 3200e possible

Spatial Autocorrelation Analysis

- Bias image shows high correlation (5-10%) between pixels in a column due to the subtraction of the reference pixels.
- This is less noticeable at higher illumination.

21

QE Excellent

- Excellent QE into the "red".
- Accuracy of results depends on knowing gain and subtracting offset.

Overscan subtraction, MPE calculated Gain 110 100 90 80 ж 70 ж 60 % pnCCD Amp Left Lower <u>ш</u> 50 ▲ pnCCD Amp Left Upper **ਰ** 40 pnCCD Amp Right Lower 30 pnCCD Amp Right Upper 20 * Diode red 10 n 900 300 800 1000 1100 400 500 600 700 Wavelength [nm] Nov 2007

PRNU Good; little structure or fringing

PRNU and Cosmetics Excellent

No dark (< 50% sensitivity) pixels.

Nov 2007

ES

PSF is **Excellent**

- Requirements ~ < 0.8 pixel</p>
- Pixels size could be reduced to a much smaller size and still meet requirements

Nov 2007

Conclusion

pnCCD has

- ⇒ Good long term bias stability,
- ⇒ Low dark current (<1e) and no hot pixels for > 50fps and -45DegC,
- ⇒ Good gain uniformity between amplifiers and CAMEX,
- ⇒ Good PRNU (< 2% peak-to-peak) little structure or fringing,
- ⇒ No dark (< 50% of surrounding) pixels,
- ⇒ Excellent red QE > 90% over 600-900nm and > 80% 580-980nm,
- ⇒ Excellent PSF of < 0.5pixel FWHM,
- ⇒ Low read noise 2-3e at 300fps.
- ⇒ Dynamic range of 3200e achievable by reducing CAMEX gain.
- Spatial Autocorrelation Analysis showed correlation due to reference pixel subtraction and little else up to saturation level.

- Poor short term bias stability; bias level can vary > 20e from image to image. Possible to correct by overscan subtraction.
- Image offset level varies with illumination
 - ⇒ Problem of accurately determining the offset and correcting for it.
 - ⇒ For SHWFS maybe ok, need to be verified.
 - ⇒ For Pyramid (ELT XAO) WFS where most pixels are illuminated could be problem.
- Optical design would have to take into account the larger central pixels (where the split occurs).
- Cause of artifacts in overscan need further investigation.

- Increase reference pixels from 4 to 11. Only need 240 out of 264 rows.
- Test different illumination patterns (e.g. illuminate only a portion of the CCD) to better understand how the offset varies with the level and type (full/partial/spots) of illumination.
- Preclock and/or mask columns to obtain better estimation of prescan offset level. As only need 240 pixels, 11 columns could be masked and used for determining offset.
- Investigate more complicated offset correction techniques; e.g. fit curve between prescan and overscan to obtain better offset estimation of intervening pixels.

