

ESO Test Plan for AO WFS CCD220

Mark Downing European Southern Observatory ESO (<u>http://www.eso.org</u>)

ESO Nov 2007

Nov 2007

- Progress on AO Test Bench
- Test Plan
- Status and Schedule

Progress on AO Test Bench

Nov 2007

Setup Well Advanced

Thanks to Sebastian Deiries and Eric Mueller

Nov 2007

Bolt to Optical Table or mount on slide TBD.

Nov 2007

ESO CCD220 Test Plan

+ES+

LOT-Oriel Monochromator (MSH391)

Equipped with

- Grism (MSG321) 600l/mm, blaze 400nm, range 250-1300nm
- Micrometer driven slit unit (MSZ111) for Bandwidth control
- Order selecting filter wheel (MSZ121)

Specifications				
Focal length:	260 mm			
Aperture ratio:	f/3.9			
Optical design:	In-Plane Czerny-Turner			
Optical port:	Side entrance and two side exits			
Operating range:	185 nm - 22 μm with interchangeable gratings			
Resolution:	0,15 nm with 1200 l/mm grating at 546 nm, 10 μm slits			
Dispersion ¹⁾ :	6.4 nm/mm for 600 l/mm grating at blaze wavelength			
Accuracy (wavelength) ²⁾ :	±0,35 nm			
Repeatability ²⁾ :	±0,08 nm			
Drive step size ²):	0,1 nm			
Focal plane size:	28 x 10 mm			
Standard slit:	Width: 4 µm – 3 mm, ±10 µm via micrometer control Height: 2-15 mm, selectable			
Grating mount:	triple grating turret, gratings interchangeable			
Grating size:	50 x 50 mm			
PC Interface:	RS232C and GPIB			
Size/Weight:	346 (L) x 362 (W) x 90 (H) / 9,5 kg			
Nov 2007				

Supplier: LOT-Oriel http://www.lotoriel.de/site/site_down/ms_msh301_deen.pdf ESO CCD220 Test Plan 6

Illumination and Detection

- Illumination
 - ⇒ Halogen Lamp (LSH101) 1000W with UV Quartz condenser (LSC115) ,
 - ⇒ NEWPORT 69931 40-300W Radiometric digital LAMP PWR Supply,
 - ⇒ <u>http://www.lot-oriel.com/site/site_down/ls_halogen1000w_uken04.pdf</u>
- QE measurement
 - ⇒ Absolute calibrated Hamamatsu S2387-1010R Silicon Photodiode
- Photocliode current measurement
 - ⇒ KEITHLEY 6514/E ELECTROMETER
 - ⇒ <u>http://www.keithley.de/products/locurrhiresist/electrometers/?mn=6514</u>

RS-5B LED Computer Programmable Light Source

- Contrary to "normal" CCD tests cannot vary exposure time to vary illumination level.
- Perform linearity measurements at fixed frame rate.
- **RS-5B** varies light intensity with 16 bit resolution and accuracy of 0.25% rms.

Source Geometry	Projection beam, lambertian/super-lamber option.			
	Up to 10 spectral channels.			
Spectral Output	Narrow or broadband configurations from 500 to 1550 nm.			
	Custom spectrums/illuminants or CIE[x,y] gamuts by request.			
Spectral Bandwidth	10-700 nm (can be narrowed on request).			
Linear Brightness Adjustment				
Resolution	16 bits			
Dynamic Adjustment Range	Depends on Spectrum (14 bits typical)			
Signal to Noise ratio	96 dB			
Non-linearity				
Radiometric	0.25% nominal (RMS of full scale)			
Photometric	< 1.0% RMS of full scale			
Colorimetric	< 1.0% RMS of full scale			
ССТ	< 1.0% RMS of full scale			
Spectral	1% to 10% RMS of full scale (depends on spectrum)			

Nov 2007

Computer and Software

- PC running XP
 - ⇒ GPIB Interface National Instruments.
- LabView Version 8 for control
 - Test Bench functions (shutter, filters, monochromator etc),
 - \Rightarrow Could do data taking and simple analysis.
- Data taking/image analysis
 - ⇒ FITS format
 - ⇒ Standard PRiSM scripts available,
 - PRiSM needs control link to OCAM and NGC for setup, control of data taking and transfer of images.
 - IDL scripts written by Simon Tulloch for specialized analysis.

Test Plan Objectives

- Quick verification of critical performance parameters:
 noise, gain, cosmetics, dark current (CIC), linearity, QE, and CTE
- Obtain experience with Marseille controller and feedforward to NGC.
 - ⇒ Stability of gain with voltage and phase of HV clock.
 - ⇒ Stability of gain and bias with temperature and time.
 - ⇒ CTE with signal level
- Perform more complete test and optimization.

Use existing metrology equipment

- Could be problems with differentiating between sapphire window and CCD surface if too close.
- ⇒ Measurements of Front Face device in progress.
- Perform measurements at room and operating temperature.
 - ⇒ Flatness
 - ➡ Optical Distance Between Silicon and Window
 - ⇒ Angle Between Silicon and Front of Window

Electro-optical Tests I

- QE

- ⇒ Use standard established setup at ESO
- ⇒ Calibrated diode comparison technique
- Cosmetic Defects (gain = 1000)
 - ⇒ Median filter stack of 10 biases and flats
 - ⇒ Bright defect deviant pixel in bias > 400e/p/s at 25Hz
 - ⇒ Dark defect deviant pixel in flat < 50% mean unbiased signal at 1500Hz.
 - ⇒ Traps (TBD)

Electro-optical Tests II

System Gain (1500fps) e/ADU

- At x1 gain use photon transfer curve.
- At 1000x use histogram technique plot histogram of 100 biases and slope of line of dark current part = gain.
- Use e2v technique of measuring IRD to determine input flux and measuring output in ADU. Measure at two levels and gain = ΔIRD/ΔADU. Can be used at x1 and x1000.

Noise (gain ~ 1000, 1500fps and 25fps)

- Same technique as e2v
 - ⇒ Plot histogram of 100 biases.
 - ⇒ Fit gaussian curve to part dominated by amplifier noise and calculate 1 std.
 - ⇒ Divide by gain=1000

Estimating Ultra Low Levels of Dark Signal Using an L3Vision Device

Mark Robbins e2v technologies

Electro-optical Tests III

Dark Current

- Measure at 1500fps and 25fps; x1000 gain
- Extract from same data as noise (100 biases)
- Use e2v technique of fraction of pixels per frame above thresholds of 500e and 1000e.

Linearity (x1000 and x200 gain)

Fixed frame rate and vary illumination level using RS-5B light source.

CTE (x1000 gain)

- Calculated by standard technique of measurement of deferred charge in overscans.
- Measure over a range (10ke-100ke) of output levels.

PSF Measurement

$$Q(x) = a - \frac{(a-b)}{\pi\sigma/k} \int_{-\infty}^{x} 1/\cosh\left(\frac{x'-c}{\sigma/k}\right) dx' \quad k = 1.368 \quad (1a)$$
$$Q(x) = a - \frac{(a-b)}{\sqrt{2\pi\sigma}} \int_{-\infty}^{x} \exp\left(\frac{-(x'-c)^2}{2\sigma^2}\right) dx' \quad (1b)$$

Apply Fit (1a) for under depleted, (1b) for over depletion

Measurement of Lateral Charge Diffusion in Thick, Fully Depleted, Back-illuminated CCDs, Armin Karcher. http://snap.lbl.gov/ccdweb/LBNL_55685.pdf

Nov 2007

Gauss and 1/Cosh Fit

ESO CCD220 Test Plan

ES

Nov 2007

Some PSF Results

Gauss Fit PSF FWHM of e2v CCD44-82 Deep Depletion CCD versus wavelength and collection phase voltage

Deep Depletion CCD44-82

Nov 2007

Test Plan Document Started

+ Элт

Table of Content

1	INTRO	DUCTION	+ <u>E</u> S+	Orgar Eur
	1.1 Purp	POSE AND SCOPE	+	
	1.2 List	OF ABBREVIATIONS & ACRONYM	VLI PROGRAMME	
	1.3 Appl	ICABLE DOCUMENTS		
	1.4 Refe	RENCE DOCUMENTS		
	1.5 Meti	ROLOGY		
	1.5.1	Flatness		
	1.5.2	Optical Distance Between Silicon and Window		
	1.5.3	Angle Between Silicon and Front of Window		
	1.6 DARK MEASUREMENTS			
	1.6.1	Bias Stability with Time		
	1.6.2	Bias Stability with Temperature		
	1.6.3	Gain and Stability with HV Clock Voltage, Temperature and Time		
	1.6.4	Noise		
	1.6.5	Dark Current		
	1.6.6	Bright Defects in Darkness		
	1.7 LIGH	IT MEASUREMENTS	Prepared By:	
	1.7.1	Photon Transfer Curve, Full Well and Linearity	Name(s)	
	1.7.2	<i>CTE</i>	Mark Downing	
	1.7.3	QE and PRNU	Approved By:	
	1.7.4	Differential Intensity Measurements, Cosmetics, and Dark Pixels	Name (s)	
	1.7.5	Trap Detection	R. Arsenault	
	1.7.6	PSF and Crosstalk	Released By:	
2	ADDEN	DIV. COMDULANCE MATDIV	Name (s)	
2	AFFEN	DIA; UUNIFLIANUE MATKIA	N. Hubin	
	21 PERE	ORMANCE REQUIREMENTS	D Baade	

EUROPEAN SOUTHERN OBSERVATORY

Organisation Européenne pour des Recherches Astronomiques dans l'Hémisphère Austral Europäische Organisation für astronomische Forschung in der südlichen Hemisphäre

Date / Signature

Date / Signature

Date / Signature

CCD220/219

Test Plan

VLT-TRE-ESO-14690-XXXX

Issue: 0.1

1 Nov 2007

Organization ESO

Organization ESO

Organization

ESO ESO

Nov 2007

Status and Schedule

- Most hardware mounted and in place.
 - ⇒ RS-5B digitally programmable light source to be ordered soon.
 - Mount for Marseille camera still pending. Either on optical slide bench or bolted direct to optical table.
- Labview GUIs working to control individual units.
- System integration with FIERA and NGC is in progress.
- Next phases to be completed in coming months:
 - ⇒ Complete system integration
 - ⇒ Cyril Cavadore to modify PRiSM to talk to LabView for full current script support (data taking and analysis).
 - ⇒ Cyril Cavadore to modify PRiSM to support Ocam ESO.
 - ⇒ Do complete calibration of Test Bench
 - ⇒ To complete preparations need Ocam ESO to test interfaces
- Experience with testing AO WFS gained in testing pnCCD (see talk tomorrow about results)
- Test plan document started.

Nov 2007