MAIT What does it mean?

- Major Area Integration Team?
- Multidisciplinary Accident Investigation Team?
- McCabe's Artificially Intelligence Tipper ? (www.mymait.com)
- Maintenance Assistance and Instruction Team?
- Martial Art Instructor / Trainer?

.... best guess:

- Manufacturing, Assembly, Integration and Testing!

OK, acronym problem solved. Let's build an NGC ...

Procurement

BOM (Bill of Materials)

BOM from design file

BOM after inspection

Designator	Comment	Footprint	Designator	Article No.	Comment	Footprint
C1_BIAS1	100nF	CC2013-0805	C1_BIAS1	A03600	KerKo 100nF ±10% 50V X7R	SMD-0805
C1_BIAS2	100nF	CC2013-0805	C1_BIAS2	A03600	KerKo 100nF ±10% 50V X7R	SMD-0805
C1_BIAS3	100nF	CC2013-0805	C1_BIAS3	A03600	KerKo 100nF ±10% 50V X7R	SMD-0805
C100_VIDEO1	10uF/25V	CC4532-1812	C100_VIDEO1	A08085	KerKo 10uF ±10% 25V X7R	SMD-1812
C100_VIDEO2	10uF/25V	CC4532-1812	C100_VIDEO2	A08085	KerKo 10uF ±10% 25V X7R	SMD-1812
C100_VIDEO3	10uF/25V	CC4532-1812	C100_VIDEO3	A08085	KerKo 10uF ±10% 25V X7R	SMD-1812
C100_VIDEO4	10uF/25V	CC4532-1812	C100_VIDEO4	A08085	KerKo 10uF ±10% 25V X7R	SMD-1812
PW_3	LT1963AES8- 1.5V	SO-G8	PW_3	2430	LT1963AES8- 1.5#PBF	8-SOIC N 1,27mm Pitch

BOM of FEB contains 930 parts

Population Assembly

Unpopulated PCB

Populated PCB

Population Assembly

Population Assembly

TWIKI contains everything we need

BIGGEST ADVANTAGES:

- HTML based, therefore platform and OS independent. Only browser required.
- No excuse not to use it.
- Accessible from both sides of the Atlantic.
- All NGC related documents are in one place.
- Possibility of creating links instead of keeping redundant information in different places.

Testing step 1: Test procedure

- Detailed test procedures for each board are available from TWIKI.
- Designers are not the only ones who can test a board. Also less experienced personnel is enabled to do testing, thus minimizing the risk of single point failures.
- Instructions how to configure/reconfigure a board for an optical or an infrared system (if applicable) making it an LRU.

Testing step 2: Board Test tools

- A total of 18 clocks and 20 biases have to be tested over the complete output range.
- Manual test would take several hours.
- Linux test script automates this test cutting down test time to 10-15 minutes without the need for user intervention.
- No additional software is required. Linux has everything you need.

- Errors encountered during test are logged to file for later analysis.

Testing step 2: Board Test tools (cont.)

- End to end noise test for clock/bias and video using the NGC sequencer.
- Requires only a cable between clock/bias connector and video input.

- Any noise problem in either clock/bias or video chain will show up in the RTD.

Testing step 3: Test report

- Test report to be filled out after successful configuration and test of each board.
- Contains detailed information about the configuration of each board (voltages, Bias setup, ADC configuration, Firmware, Hardware-ID etc.)
- Double check of all voltages and settings against the numbers given in the TWIKI test procedure and User manual

- To be attached to the history file of each board.

Integration

Goals:

- Make sure that all individually tested boards work properly together in the final system.
- Fine-tuning of voltages in the final setup taking into account number of boards and final cable length.
- Verification of clock/bias and video chain. Using the available test tools this test can be done in ~ 30 45min.
- <u>TO DO</u>: Create integration test report listing the most important system parameters. To be included in the project's TWIKI page.

Maintenance

- Basic procedure can be found in the NGC production manual.
- All changes made to a board must be documented in the history file.
- -The TWIKI bug report provides useful feed back to designers in order to avoid Problems in new revisions.

TO DO:

- Compile a "most common failures" –list for each board based on experience gained during maintenance.
- Prepare list for "preventive maintenance"

