

Report of the ALMA Front-end & Digitizer Requirements Upgrade Working Group

Version: 2

ALMA-05.00.00.00-3009-2-REP

2022-09-09

ļ	Prepared by	Organization	Signature and date
	Juande Santander-Vela (Chair)	JAO	
ſ	Giorgio Siringo (Co-chair)	JAO	
	John Carpenter	JAO	
	Carla Crovari	JAO	
	Todd Hunter	NRAO	
	Takafumi Kojima	NAOJ	
	Hiroshi Nagai	NAOJ	
	Neil Phillips	ESO	
	Wenlei Shan	NAOJ	
	Kamaljeet Saini	NRAO	
	Gie Han Tan	ESO	
	Reviewed by	Organization	Signature and date
	Carla Crovari	JAO	
	Todd Hunter	NRAO	
	Kenichi Kikuchi	NAOJ	
Ī	Juande Santander-Vela	JAO	
Ī	Tzu-Chiang Shen	JAO	
Ī	Gie Han Tan	ESO	
	Approved by	Organization	Signature and date
	Stuartt Corder	JAO	
	Alvaro Gonzalez	NAOJ	
	Phil Jewell	NRAO	

Version	Date	Affected Paragraphs(s)	Reason/Initiation/Remarks
А	2019-06-27	All	First Draft
A01	2020-07-31	All	Updated with feedback from the AMT
A02	2020-10-11	All	Updated with feedback from the AMT
A03	2020-10-21	All	Minor updates to clarify text
В	2020-10-27	Several	Version released to the IXTs
B1	2020-12-16	Table 12	Updated Table 12
B2	2022-08-17	All	Document updated as per the new charge from the IDT. Two new sections added: Section 9 deals with some additional issues (out-of-band signal power, YTO ranges and LO parking options) not previously considered in the report; Section 10 shows the new charge from the IDT to this group for this very update.
2	2022-09-09	Document Number, List of Authors, Change Record	Changed from ALMA-05.00.00.00-0048- C-REP to ALMA-05.00.00.00-3009-2 for release in AEDM. Added Wenlei Shan to list of authors. Removed Kojima-san and replaced him with Kikuchi-san in list of reviewers.

Change Record

Table of Contents

Та	able of Contents	4
1	EXECUTIVE SUMMARY	6
2	RELATED DOCUMENTS	
	2.1 Applicable Documents List	9
	2.2 Reference Documents List	9
	2.3 Abbreviations and Acronyms	
3	SCIENCE	
4	OVERVIEW OF CURRENT ALMA SYSTEM AND POTENTIAL UPGRADES	
	4.1 Overview of current ALMA system	
	4.2 Potential Upgrades	
	4.3 Survey of the technical feasibility and readiness	13
5	DEFINITIONS	17
5	DEFINITIONS	
6	RECEIVERS	
	6.1 Receiver Noise Temperature	
	6.1.1 Band 1 and Band 2	
	6.1.2 Band 3	
	6.1.3 Band 4, 5, and 6	19
	6.1.4 Band 7	
	6.1.5 Band 8	
	6.1.6 Band 9	
	6.1.7 Band 10	
	6.2 RF Bandwidth	
	6.3 Instantaneous Bandwidth	
	6.4 Image Rejection Ratio	
	6.4.1 Current Requirement	
	6.4.2 Effect of improvements on sensitivity	
	6.4.3 New Technical Goal	
	6.5 Passband Gain Variations	26
7	DIGITIZER	20
1	7.1 Digitizer Sampling Speed	
	7.1 Digitizer Sampling Speed 7.2 Effective Number of Bits (ENOB)	
	 7.2 Effective Number of Bits (ENOD) 7.3 Interface between Digitizer and Back-end / Correlator 	
8	OTHER PERFORMANCES	
	8.1 ALMA Polarization Performance	
	8.1.1 On-axis and off-axis instrumental polarization	
	8.1.2 Optics: Pointing offset	
	8.2 System Internal Spurious Signals	
	- · · ·	
9	Performance issues with legacy receivers after the WSU	
	9.1 Out-of-band IF signal	
	9.2 YTO ranges and LO parking options	36

10 Annex: Charge of the FE/Digitizer Working Group	
Request for the Front-end/Digitizer Working Group	
a) Objectives:	
b) Deliverables requested	
c) Suggested membership:	

1 EXECUTIVE SUMMARY

The ALMA 2030 Development Roadmap [AD01] defines a long-term development strategy for the upgrade of hardware, software, and analysis tools to enhance the future observing capabilities of ALMA.

The ALMA Front-end & Digitizer Requirements Update Working Group (hereafter the Working Group) was established by the JAO and AMT in November 2018 to define system level technical goals that will guide ongoing and future ALMA development effort. The Working Group consists of technical and science experts from East Asia, Europe, North America, and the JAO. Its mandate is to deliver a revised, consistent set of technical goals for front-end and digitizer products to realize the science goals defined in the ALMA 2030 Development Roadmap.

According to the board-approved Development Roadmap, the current development priorities, based on scientific merit and technical feasibility, are to:

- broaden the receivers' intermediate frequency (IF) bandwidth by *at least* a factor two, with a factor of four being strongly desired, and
- upgrade the associated electronics and correlator.

These improvements, when realized, will advance a wide range of scientific studies by significantly reducing the time required for blind redshift surveys, spectral scans, and deep continuum surveys.

This report summarizes the desired *technical goals* for the ALMA receiver systems and digitizers, based upon the deliberations of the Working Group. In addition to the RF front-end, the portion of the ALMA system considered during the discussions includes the signal path from the output of the RF front-ends up to and including the digital samplers. However, the implementation details (i.e., component level requirements) of the front-ends, the front-end (i.e. first) local oscillator (LO) system, or the correlator have not been discussed (intentionally) by the Working Group.

The *technical goals* for the front-end and digitizer systems considered in this report are fairly straightforward, at least as far as operation in the interferometer mode (i.e., the cross-correlation measurements) is concerned. Some questions remain regarding the total power measurements, such as the image rejection ratio. The proposed *technical goals* that are relevant to the ALMA future front-end and digitizer system design are summarized in Table 1, together with the current technical requirements.

In December 2020 version B of this report was submitted by the Working Group to the ALMA Management Team (AMT). After subsequent review of this report by the Integrated Development Team (IDT) it concluded that clarification of several topics would be beneficial in preparation for the WSO System Requirements Review. As a result of this conclusion the IDT requested the FE/DIG Requirements WG to address these points for clarification and provide an updated report, this version C (see Annex in Section 10).

The ALMA 2030 Development Roadmap [AD01] recommends to expand the bandwidth of the receivers as top development priority for ALMA. In this report, therefore, the Working Group, in addition to the *technical goals*, defines additional *stretch goals*, not only for the IF bandwidth properties but where possible also for frequency-dependent gain variation and sideband separation. For receiver temperature, the only potential stretch goal was identified for Band 4, and the WG felt it did not make sense to just include a single band-specific stretch goal for receiver temperature.

In the following sections, we discuss various aspects of the receivers and make recommendations for the update of the requirements based on the current state-of-the-art technologies. Those recommendations are summarized in Table 1.

Parameters	Req # Existing Technical Requirement		Working (Recommen	-	Comment		
Bandpass Shape: digitizer baseband 272		of 7.0 dB of	peak to peak in any 2 the IF band for Bands peak to peak in any 2 5 the IF band for Band peak to peak in any 2 of the IF band for Ba	s 2, 3, 10; CHz portion ls 4 to 9; CHz portion	<5.4 dB peak to 100% of the IF		The original 5.4 dB recommendation is considered quite stringent, and might be difficult to achieve, so it is now considered a stretch goal. Details on the recommendation and the interplay with quantization efficiency and ENOB, and the apportioning among components can be found in Section 6.5.
		Band	T _{RX} over 80% of the RF band	T _{RX} at any frequency	T _{RX} over 80% of the RF band	T _{RX} at any frequency	
		1	28 K	32 K	N.A.	N.A.	The receiver will not be upgraded prior to the start of the 2030s.
		2	30 K	47 K	N.A.	N.A.	The receiver will not be upgraded prior to the start of the 2030s.
		3	See Comment	See Comment	35 K	40 K	The existing requirements: < 39K (averaged over all four IFs 4 GHz bandwidth at LO = 104 GHz) < 43K (averaged over all four IFs 4 GHz bandwidth for any LO setting)
		4	51 K	82 K	40 K	50 K	The existing Band 4 demonstrates performance around 40 K. Reaching $4hv/k$ like bands $5-7$ is likely too ambitious, so a compromise value is suggested.
Receiver		5	55 K	75 K	41 K	51 K	The existing Band 5 demonstrates performance around 4hv/k. The proposed performance goal for 80% of the band is 4hv/k at 211 GHz and for the whole band is 5hv/k at 211 GHz.
Noise Temperatures		6	83 K	136 K	53 K	66 K	The existing Band 6 demonstrates performance around 4hv/k. The proposed performance goal for 80% of the band is 4hv/k at 275 GHz and for the whole band is 5hv/k at 275 GHz.
		7	147 K	219 K	72 K	90 K	The proposed performance goal for 80% of the band is $4h\nu/k$ at 373 GHz and for the whole band is $5h\nu/k$ at 373 GHz.
		8	196 K	292 K	100 K (390 – 420 GHz), 120 K	144 K	The proposed performance goal for 80% of the band is $5hv/k$ at 500 GHz and for the whole band is $6hv/k$ at 500 GHz. The goal is further tightened to 100 K at $390-420$ GHz.
		9	175 K (DSB)	261 K (DSB)	242 K	290 K	The proposed SSB noise performance goal for 80% of the band is 7hv/k at 720 GHz and for the whole band is $1.2 \times 7hv/k$ at 720 GHz.
		10	230 K (DSB) over 80% of the reduced frequency range 787-905 GHz	344 K (DSB)	365 K	438 K	The proposed performance goal for 80% of the band is $8hv/k$ at 950 GHz and for the whole band is $1.2 \times 8hv/k$ at 950 GHz.

Table 1: Summary of current technical requirements and proposed technical goals.

Parameters	ers Req # Existing Technical Requirement		Working Group Recommendation	Comment
lst Mixer Sideband Ratio	Sideband Ratio 231 frequency range, SSB and 2SB <3 dB difference across 80% of the combined IF and LO frequency ranges, DSB		 >15 dB suppression over 90% of the IF frequency range >13 dB suppression over 100% of the IF frequency range 	Noting that no new receivers will be DSB, we require the following performance for all 2SB and SSB receivers.
Instantaneous			≥ 16 GHz per polarization, with a goal of 32 GHz	IF bandwidth limitations will be set by the digitizers.
Effective Number of Bits (ENOB)	322	See Comment	≥ 5 ENOB (≥ 6 ENOB stretch goal), specified under the assumption of noise, with Gaussian distribution, as the input signal.	The existing requirement was not written in terms of ENOB, but rather on the raw number of bits: 3-bit
Digitizer Sampling Speed TBD		4 GSps	≥ 40 GSps	

2 RELATED DOCUMENTS

2.1 Applicable Documents List

The following documents are part of this document. In the event of conflict between the documents referenced here and this document, this document shall take precedence.

No	Document Title	Reference
AD01	ALMA Development Roadmap	Link

2.2 Reference Documents List

No	Document Title	Reference
RD01	Front-End Sub-System Technical Specifications	ALMA-40.00.00-001-B-SPE
RD02	Performance and Characterization of a Wide IF SIS-Mixer- Preamplifier Module Employing High-J c SIS Junctions	IEEETransTerahertzSciTechnol, 7(6), 694-703, 2017
RD03	Wideband 67–116 GHz receiver development for ALMA Band 2	<u>A&A 634, A46, 2020</u>
RD04	The ALMA Band 6 Receiver Upgrade	Presentation by J. Mangum at ESO WS 2019
RD05	ALMA Band 9 2SB Upgrade Study Progress Report Jul-Aug 2021	FEND-40.02.09.00-1968-A-REP
RD06	Receiver development for the IRAM telescopes	Presentation by C. Risacher at ESO WS 2019
RD07	275–500-GHz Wideband Waveguide SIS Mixers	IEEE Trans Terahertz Sci Technol, 8(6), 638-646, 2018
RD08	A Deployable 600-720 GHz ALMA-Type Sideband-Separating Receiver Cartridge	Proc. 29th Int. Symp. Space Terahertz Technol 2018
RD09	Sideband Separating Mixer for atmospheric window 790-950 GHz	Presentation by A. Khudchenko at ESO WS 2019

No	Document Title	Reference
RD10	Demonstration of a Wideband Submm-wave Low-noise Receiver with 4-21 GHz IF Output Digitized by a High-speed 32 GSps ADC	<u>A&A, 38713-20, 2020</u>
RD11	Upgrading the ALMA Digital System, from Digitization to Correlation	Presentation by B. Quertier at ALMA 2030 Correlator WS
RD12	Band 3 Development at Herzberg	Presentation by L. Knee at ESO WS 2019
RD13	Improving Band 9 Sensitivity by Advanced Tuning Algorithms - Final Study Report	FEND-40.02.09.00-1944-C-REP
RD14	Revised ALMA System Technical Requirements - Polarization	ALMA-80.04.00.00-0038-A-SPE
RD15	Missing Specification on Receiver Alignment (attachment Illumination Centering to FEND-40.02.05.00-0127-B-CRE)	Richard Hills, 2012-08-05
RD16	ALMA System Technical Requirements	ALMA-80.04.00.00-005-C-SPE
RD17	Revised ALMA System Technical Requirements - Spurious Signals	ALMA-80.04.00.00-0042-A-SPE
RD18	High-gap Nb-AlN-NbN SIS junctions for frequency band 790–950 GHz	IEEE Trans Terahertz Sci Technol, 6(1), 127-132. 2015
RD19	Superconducting Mixer Technology at NAOJ	Presentation by M. Kroug at ESO WS 2019S
RD20	Sideband Calibration of Millimeter-Wave Receivers	ALMA Memo 357, Kerr, Pan & Effland 2001
RD21	Upgrading the ALMA Digital System, from Digitization to Correlation Final Report	B. Quertier et al., July 16, 2021
RD22	Convenient formulas for quantization efficiency	Thompson, Emerson & Schwab, 2007, Radio Science, vol. 42

2.3 Abbreviations and Acronyms

A complete set of acronyms and abbreviations can be found on the <u>ALMA Acronym Finder</u> web page.

3 SCIENCE

The ALMA Development Roadmap identified the following three science goals to drive future technical developments over the next decade.

Origins of Galaxies

Trace the cosmic evolution of key elements from the first galaxies (z>10) through the peak of star formation (z=2-4) by detecting their cooling lines, both atomic ([CII], [OIII]) and molecular (CO), and dust continuum, at a rate of 1-2 galaxies per hour.

Origins of Chemical Complexity

Trace the evolution from simple to complex organic molecules through the process of star and planet formation down to solar system scales (\sim 10-100 au) by performing full-band frequency scans at a rate of 2-4 protostars per day.

Origins of Planets

Image protoplanetary disks in nearby (150 pc) star formation regions to resolve the Earth forming zone (~ 1 au) in the dust continuum at wavelengths shorter than 1mm, enabling detection of the tidal gaps and inner holes created by planets undergoing formation.

The primary driver needed to achieve the science goals for the *Origins of Galaxies* and the *Origins of Chemical Complexity* is increased observing speed of spectral lines. This calls for technical improvements to process larger IF bandwidths at fine spectral resolution to increase the spectral breadth for redshift surveys and chemical surveys, lower receiver temperatures for improved instantaneous sensitivity, and improved efficiency of the digital processing. These same developments will also improve the continuum sensitivity needed to probe the *Origins of Planets*.

4 OVERVIEW OF CURRENT ALMA SYSTEM AND POTENTIAL UPGRADES

4.1 Overview of current ALMA system

Before discussing the new technical goals, it is necessary to review some basic information on the current ALMA front-end and digitizer systems. The ALMA front-end is the first element in a complex chain of signal processing and contains the analog-RF portion of the receivers. The ALMA front-end covers all the available atmospheric frequency windows between 35 GHz and 950 GHz in 10 bands with the use of High Electron Mobility Transistors (HEMT, Bands 1 and 2) or Superconductor-Insulator-Superconductor mixers (SIS, Bands 3 to 10) as RF detectors. Band 1 employs a single sideband scheme (SSB) with an IF bandwidth of 8 GHz per polarization. The most recent design proposed for Band 2 employs a sideband separating scheme (2SB) with an IF of (at least) 14 GHz per polarization. Bands 3 to 8 employ sideband separating mixers and have 4 GHz of IF bandwidth per polarization sideband (5.5 GHz IF bandwidth for Band 6 only). The higher frequency bands (Bands 9 and 10) are double sideband systems (DSB) with an IF bandwidth of 8 GHz per polarization. These two receivers may be upgraded with a sideband separation scheme [RD05][RD08][RD09][RD19]. Currently, the ALMA digitizer system employs a 3-bit quantization levels from 3-bit to 2-bit per sample.

Band	IF (GHz)	Туре
1 (in production)	4-12	SSB
2 (under development)	4-18 (maybe wider)	2SB
3, 4, 5, 7, 8	4-8	2SB
6	4.5-10*	2SB
9, 10	4-12	DSB
* The Band 6 IF bandwidth he from 4.5 to 10 GHz for sin transitions of ¹² CO, ¹³ CO, and	multaneous observations	of the J=2-1

Table 2: Tabulation of the IF configurations for the first-generation of the ALMA Bands.

Apart from the collecting area, array sensitivity depends primarily on the system noise temperature and bandwidth (for continuum). The RF front-ends have a major role in defining these quantities. Figure 1 shows the receiver noise temperature for the current ALMA receivers. At low frequencies (Bands 3 to 7), the receiver noise temperatures are only a few times the quantum limit and approach practical physical limits. However, there is room for improvement in the noise performance of some bands, particularly at higher frequencies.

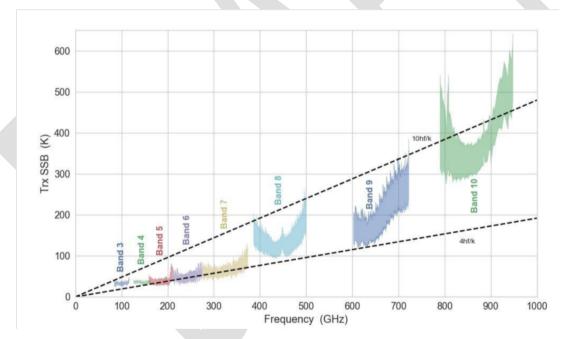


Figure 1: Achieved receiver noise temperature for the various ALMA receivers. The shaded region encompasses 75% of the receivers about the median receiver temperature from [AD01]. Bands 3-8 are 2SB receivers, and Bands 9 and 10 are DSB. The noise temperature shown for the DSB receivers is twice the *measured* DSB temperature, to enable a fair comparison to the 2SB values indicated for other bands. (Note: The on-sky measured T_{RX} for Band 4 (see Figure 3) is slightly higher than the laboratory measured values plotted here; the reason for this is under investigation.)

4.2 **Potential Upgrades**

Each of the ALMA Executives hosted a regional development workshop after the Working Group was established. The workshops provided an overview of the ongoing Studies and Projects in each region and the prospects of long-term developments. The list of workshops and links are provided in Table 3. The Working Group presented a summary of the activity at the European Development Workshop on 3-5 June 2019. There were open discussion sessions on the ALMA Development Roadmap, receiver development, and a system-wide bandwidth increase. The Working Group used the community feedback to update the technical feasibility and readiness of various developments from the regional communities and development teams.

The ALMA 2030 Correlator Workshop was held at Charlottesville, 11-13 February 2020. There was a discussion on limitations of the IF bandwidth and maximum IF frequency.

The ALMA Development Workshop "The ALMA 2030 Vision: Design considerations for Digitizers, Backend and Data Transmission System" was held on 14-16 October 2020. Further information may become available in the coming months and that would need to be considered for trade off analysis and overall system requirements (e.g., state of the art industrial digitizer performance).

Workshop / Conference	Dates	Webpage
East Asia Development Workshop 2018	14-15 Dec. 2018	URL
NRAO ALMA Development Cycle 7 Studies Call for Proposals meeting	16 Jan. 2019	URL
European Development Workshop	3-5 Jun. 2019	<u>URL</u>
East Asia Development Workshop 2019	10-11 Dec. 2019	URL
The ALMA2030 Vision: Design Considerations for the Next ALMA Correlator Workshop	11-13 Feb. 2020	URL
The ALMA 2030 Vision: Design considerations for Digitizers, Backend and Data Transmission System	14-16 Oct. 2020	URL

 Table 3: Working Group participation in the regional ALMA Development workshops.

4.3 Survey of the technical feasibility and readiness

Receiver Sensitivity:

Results from recent studies carried out by the various ALMA partners as well as at other observatories have indicated a potential for receiver noise temperature improvement for Band 3 of the order of 10 K or more with improved SIS mixers [RD12].

The current ALMA receivers are equipped with cryogenic low noise amplifiers (CLNA) based on the technology from 10 years ago. For example, the noise temperature for the 4 - 8 GHz

CLNAs used in Band 4 and 8 receivers is 7 K (GaAs HEMTs), whereas that for the 4 - 12 GHz CLNA (Band 10) is 5 K (InP HEMTs). The current state-of-the-art CLNAs have noise temperature values of 2.3 K for 4 - 8 GHz, 3.6 K for 4 - 12 GHz, and 5.2 K for 4 - 20 GHz, as reported by the Low Noise Factory¹. The noise temperature in Bands 4/8/10, therefore, could be improved just by replacing their CLNAs.

Additionally, for the higher bands, several groups have investigated high-Jc superconducting junction technology and preliminary results indicate the possibility of wider IF and RF bandwidths, as well as flat noise temperature performance across the full bands [RD18][RD19].

Wideband IF/RF:

A survey of various receiver development efforts revealed impressive progress by the receiver community with regard to broader IF bandwidths. Current technology indicates promise for much increased IF bandwidth. The community has either started work on, or has achieved, 12 GHz (4 - 16 GHz) and 16 GHz (4 - 20 GHz) IF bandwidths (reports from NAOJ [RD02], ESO (B2) [RD03], NRAO [RD04], SRON [RD05], IRAM [RD06]); consequently 4 - 16 GHz (i.e., 3 times larger bandwidth than most current ALMA receivers) certainly appears to be feasible with existing technology. However, a careful evaluation of several kelvins worth of trade-off on receiver noise temperature between wideband and narrowband designs is necessary. IF gain variation requirement on the wider designs will depend on sampler bandwidth and precise architecture.

The community has already demonstrated the feasibility of wider RF bandwidth by combining two ALMA bands (e.g. NAOJ Band 7+8 (SIS) [RD07], IRAM 100 GHz mixer (SIS: 67 - 116 GHz) [RD06], Band 2 (CLNA: goal 67 - 116 GHz) [RD03]). Therefore, increasing the RF bandwidth is within the reach of existing technology.

An extension of the RF bandwidth of the ALMA receivers can lead to the reduction in the total number of receivers that need to be operated and maintained in the ALMA front-end, which could, in principle, reduce operational costs in terms of the total number of receiver cartridges to serve.

The ALMA cryostat can house 10 cartridge receivers. Due to its thermal performance, only three receivers can be powered at the same time. Switching to a receiver band that is not yet powered requires a maximum of 15 minutes. Rapidly changing sources, such as solar flares, comets and AGN, may also benefit from simultaneous or near simultaneous observations. Extension of the boundaries of an existing band or combining bands into a single cartridge will benefit simultaneous or near simultaneous observations.

However, given the existing agility of ALMA in switching between receiver bands, there is no strong science-community justification/support for an RF extension. Besides, there would be availability implications (i.e., wider parts of the EM spectrum might not be available to a given antenna in case of failure of an extended cartridge) that do not make the RF bandwidth

¹<u>https://www.lownoisefactory.com/</u>

extension a net benefit necessarily, unless the availability of the new cartridges was improved by a significant margin over the original ones.

It is also important that the performance of new wider bandwidth designs is compared against the achieved receiver noise temperature on ALMA and not only against the original ALMA requirements since the existing ALMA receivers surpass the requirements by quite some margin in many cases. For example, current ALMA Bands 5 to 9 have achieved receiver noise temperatures well below the original requirements across most of the band.

Sideband Separating SIS receivers at high frequency bands:

SRON/NOVA have developed a high-performance sideband-separating (2SB) receiver for 600 – 720 GHz (as ALMA Band 9) that has been commissioned in the SEPIA front-end at APEX [RD08]. Based on the APEX/SEPIA receiver, a development study is ongoing for an ALMA Band 9 receiver with sideband separation and IF bandwidth extension likely up to 16 GHz [RD05]. A new receiver for the RF range 790 – 950 GHz (ALMA Band 10) with 2SB mixers has been tested in the laboratory recently and shows comparable performance characteristics [RD09].

Digitizer:

The Working Group carried out a review of current existing and future promising ADCs. From a receiver system architectural point of view, digitization of broad bandwidths early in the signal processing chain is favored. In this way, system complexity can be reduced; e.g., there is no need for a second heterodyne stage, which can also introduce issues like additional signal spurs due to local oscillators, and calibration is easier. Evolution of high-speed digitizer technology makes it feasible in the near future to cover the instantaneous bandwidth as required by the ALMA 2030 Roadmap upgrade with one integrated digitizer chip.

NAOJ has carried out a demonstration of an ADC module from Keysight technologies², capable of high-speed sampling at 32 GSps with 12.5 GHz bandwidth per channel and an effective number of bits of 6.5 [RD10].

Laboratoire d'Astrophysique de Bordeaux (LAB), part of Bordeaux University, made a survey of current and future commercial products with bandwidth and sampling frequencies commensurate with the ALMA 2030 objectives [RD11]. Devices from Analog Devices, Adsantec, Micram, Alphacore, Pacific Microchip, Intel, and Fujitsu were considered. At least one device with very promising performance was identified, with demonstrated sampling speeds of up to 40 GSps in the laboratory, which is considered suitable for further development. New devices may become available in the coming months and be considered for another trade off analysis of overall system requirements (e.g., state of the art industrial digitizer performance).

² M8131A–16/32 GSa/s Digitizer, Preliminary DataSheet, version 0.8

However, it is emphasized that a final decision for a digitizer device is urgently needed since delaying this decision will begin to impact the ALMA 2030 development schedule.

5 DEFINITIONS

This document presents the key technical goals for future ALMA front-end and digitizer products that are consistent with the science goals in the ALMA 2030 Development Roadmap. These technical goals are defined as those requirements directly flowing down from the science goals as derived from the ALMA Development Roadmap [AD01]. There are secondary, non-key, requirements applicable to the ALMA front-end and digitizer products; these are currently in development and not presented in this document.

Any proposed technical performance parameter presented in this document should be considered a *technical goal* to be achieved for future upgrades. In some cases, the required technology is still in development and consequently, design/development teams are not able to guarantee the required performance. Furthermore, it is recognized that various design/development teams might have to make informed trade-offs between receiver noise temperatures, IF/RF bandwidths, IF passband ripple, and other specifications when optimizing a design. Given the impact of these trade-offs on the ALMA system architecture and performance, these decisions must be made in consultation and agreement with the JAO.

It is expected that in the next few years, once the necessary technology development has sufficiently matured, these technical goals (perhaps modified if deemed necessary) will be formalized as technical requirements, which would be binding requirements for deliveries to the JAO.

6 **RECEIVERS**

Apart from the collecting area, array sensitivity depends primarily on the system noise temperature and bandwidth (for continuum), and the RF front-ends have a major role in defining these quantities.

6.1 Receiver Noise Temperature

Updated receiver noise temperature goals have been determined based on the on-array performance of existing ALMA receivers, typical sky temperatures, technical limitations (e.g., need for warm optics), and the status of ongoing developments in the field. The technical goals are intended to be ambitious but attainable on the 2030 timescale.



Figure 2: Existing requirements and proposed receiver noise temperature goals for Band 3. Where available, the existing median on-sky receiver noise temperature values are indicated along with 1σ bounds.

6.1.1 Band 1 and Band 2

Band 1 and Band 2 are under construction. These receivers will not be upgraded after their initial implementation prior to the start of the 2030s. Band 2 prototypes are currently demonstrating compliance with the original Band 2 noise temperature requirements, and generally achieving around 7hv/k over 67--116GHz.

6.1.2 Band 3

Recent receiver developments demonstrate that a noise reduction in Band 3 is possible [RD12]. Due to the ${}^{12}CO(J=1-0)$ line at the top of the band, and the very low T_{sky} at the bottom end of the band, receiver temperature at the band edges must be well controlled.

Band	Existing re	equirement	Propo	osed goal
	T _{SSB} over 80% of the RF band	T _{SSB} at any RF frequency	T _{SSB} over 80% of the RF band	T _{SSB} at any RF frequency
3	See Note	See Note	35 K	40 K

Table 4: Existing requirements and proposed receiver noise temperature goals for Band 3

Note:

For Band 3, the existing noise temperature requirements are as follows: < 39K (averaged over all four IFs 4 GHz bandwidth at LO = 104 GHz) < 43K (averaged over all four IFs 4 GHz bandwidth for any LO setting)

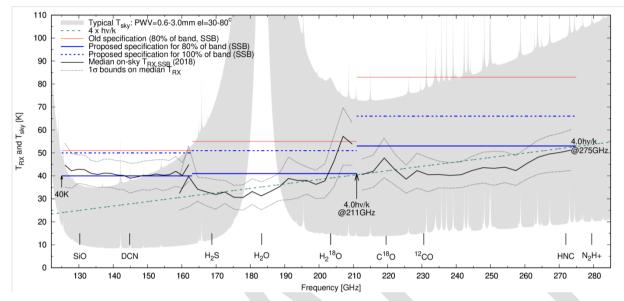


Figure 3: Existing requirements and proposed receiver noise temperature goals for Band 4, Band 5, and Band 6. The existing median on-sky receiver noise temperature values are indicated along with 1σ bounds.

6.1.3 Band 4, 5, and 6

Given the low T_{sky} and the relatively large on-sky measured receiver noise temperatures for Band 4 (compared to the 4hv/k photon limit), a significant noise improvement for Band 4 is desirable. As mentioned in Section 4.3, there is room for noise temperature improvements for Band 4 by just replacing its CLNA. However, due to the noise contribution from the RF input optics and ohmic losses of the waveguide circuit, reaching 4hv/k like bands 5 – 7 is likely very ambitious, so a compromise value is suggested.

Although the WG felt that no stretch goal could be given, for Band 4 the sky noise is so low compared to the receiver noise that any improvement in T_{RX} would benefit the system sensitivity, and this WG encourages teams to pursue those improvements if possible.

Band	Existing re	equirement	Propo	osed goal
	T _{SSB} over 80% of the RF band	T _{SSB} at any RF frequency	T _{SSB} over 80% of the RF band	T _{SSB} at any RF frequency
4	51 K	82 K	40 K	50 K

Table 5: Existing requirements and proposed receiver noise temperature goals for Band 4

The existing Band 5 demonstrates the median performance around 4hv/k except for the high band edge. The proposed performance goals for 80% of the band is 4hv/k at 211 GHz and for the whole band is 5hv/k at 211GHz. Improved flatness of noise across the band is desired.

Band	Existing re	equirement	Propo	osed goal
	T _{SSB} over 80% of the RF band	T _{SSB} at any RF frequency	T _{SSB} over 80% of the RF band	T _{SSB} at any RF frequency
5	55 K	75 K	41 K	51 K

 Table 6: Existing requirements and proposed receiver noise temperature goals for Band 5

The existing Band 6 demonstrates median performance around 4hv/k within its RF band. Further improvement is likely too ambitious due to the noise contribution from the ohmic losses of the waveguide circuit. Therefore, a compromise value is suggested. The proposed performance goals for 80% of the band is 4hv/k at 275 GHz and for the whole band is 5hv/k at 275 GHz.

 Table 7: Existing requirements and proposed receiver noise temperature goals for Band 6

Band	Existing re	equirement	Propo	osed goal
	T _{SSB} over 80% of the RF band	T _{SSB} at any RF frequency	T _{SSB} over 80% of the RF band	T _{SSB} at any RF frequency
6	83 K	136 K	53 K	66 K

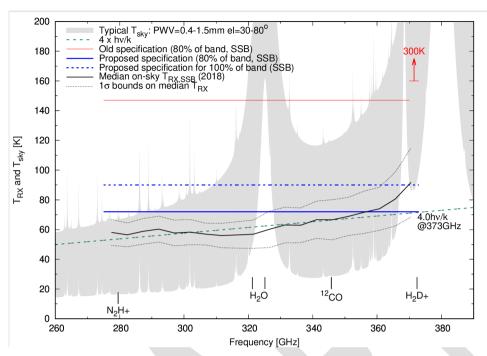


Figure 4: Existing requirements and proposed receiver noise temperature goals for Band 7. The existing median on-sky receiver noise temperature values are indicated along with 1σ bounds.

6.1.4 Band 7

The existing Band 7 receiver demonstrates median performance around 4hv/k at the center of the band. The proposed performance goals for 80% of the band is 4hv/k at 373 GHz and for the whole band is 5hv/k at 373 GHz. Improved flatness of noise across the RF band is desired, and the recent receiver developments in the Band 7 frequency range suggest this should be feasible.

Band	Existing re	equirement	Propo	osed goal
	T _{SSB} over 80% of the RF band	T _{SSB} at any RF frequency	T _{SSB} over 80% of the RF band	T _{SSB} at any RF frequency
7	147 K	219 K	72 K	90 K

Table 8: Existing requirements and proposed receiver noise temperature goals for Band 7

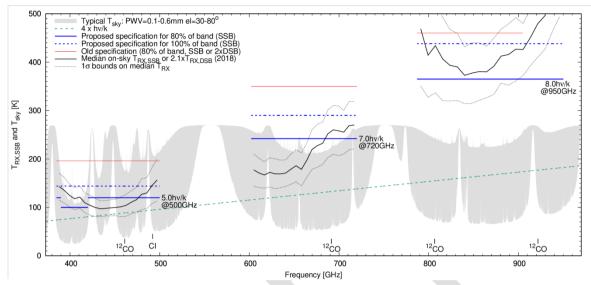


Figure 5: Existing requirements (for 80% of the band) and proposed SSB receiver noise temperature goals for Band 8, Band 9, and Band 10. The existing median on-sky receiver noise temperature values are indicated along with 1σ bounds. For bands 9 and 10, the measured DSB noise has been multiplied by 2.1 to indicate an approximate SSB value.

6.1.5 Band 8

The current Band 8 receiver noise temperature is considerably far from the 4hv/k photon limit demonstrated by Bands 5 – 7, but recent developments suggest that improved performance in this regard is feasible. Improved flatness across the band is also desirable due to the important CI (neutral carbon) line at the top of the band and the 410 GHz window at the bottom of the band. Due to the low T_{sky} available in the 410 GHz window, a tighter noise requirement is recommended in the corresponding frequency span. The proposed performance goals outside the 410 GHz window are 5hv/k at 500 GHz over 80% and 6hv/k over the whole band.

Band	Existing requirement		g requirement Proposed goal	
	T _{SSB} over 80% of the RF band	T _{SSB} at any RF frequency	T _{SSB} over 80% of the RF band	T _{SSB} at any RF frequency
8	196 K	292 K	100 K (390 – 420 GHz), 120 K	144 K

Table 9: Existing requirements and proposed receiver noise temperature goals for Band 8

6.1.6 Band 9

The Working Group assumed that Band 9 will be upgraded to 2SB. Improvement in the noise temperatures of the mixers might be possible by using higher Jc junctions, and some optimization of noise temperature at the top of the band also seems plausible even with the existing AlN mixers [RD13]. A 2SB Band 9 is expected to be receiver noise limited rather than sky noise limited, so lower receiver noise is highly desirable. The proposed performance goals for 80% of the band is 7hv/k at 720 GHz and for the whole band is $1.2 \times 7hv/k$ at 720 GHz.

Band	Existing re	equirement	Propos	ed goal
	T _{DSB} over 80% of the RF band	T _{DSB} at any RF frequency	T _{SSB} over 80% of the RF band	T _{SSB} at any RF frequency
9	175 K	261 K	242 K	290 K

Table 10: Existing requirements and proposed receiver noise temperature goals for Band 9

6.1.7 Band 10

The Working Group assumed that Band 10 will be upgraded to 2SB. Noise reduction is highly desirable considering how much the receiver noise dominates over the sky in a 2SB receiver for Band 10. High current density junctions are demonstrating much improved noise flatness across the band, indicating that improvement is feasible. The proposed performance goal for 80% of the band is 8hv/k at 950 GHz and for the whole band is $1.2 \times 8hv/k$ at 950 GHz.

Table 11: Existing requirements and proposed receiver noise temperature goals for Band 10

Band	Existing require	ement	Propose	d goal
	T _{DSB} over 80% of the reduced RF range 787-905 GHz	T _{DSB} at any RF frequency	T _{SSB} over 80% of the RF band	T _{SSB} at any RF frequency
10	230 K	344 K	365 K	438 K

6.2 **RF** Bandwidth

The current ALMA requirements specify the RF ranges for 10 receiver bands. The Working Group considered three reasons to modify the RF ranges of the bands. First, the frequency range may be extended to cover additional important spectral lines. This could improve the efficiency of some programs that would otherwise require two tunings in different receivers, or it could enable users to expand their science by adding additional lines simultaneously to the main science goal. A second use case is that by having the RF ranges of bands overlap by one IF bandwidth, the efficiency of spectral surveys that span more than one band could be increased. Finally, if two or more bands could be covered by one receiver, there could be operational benefits since there would be fewer receivers to maintain. Also, this would open up a spot in the front-end that could be used, for example, for a multi-beam receiver (although that would not be without its own technical challenges, and it is not clear that this would be useful for the interferometric array).

After considering these aspects, the Working Group determined that optimizing the receiver performance was more important than increasing the RF range. Considerations for broader RF ranges are not precluded in any receiver, but no changes in the band definitions are proposed

as a goal. Should there be proposed changes in the RF definition of the bands by receiver development groups (to cover, for instance, additional spectral lines at the band edges due to scientific merit), there should be no loss in RF coverage from the ensemble of ALMA receivers.

6.3 Instantaneous Bandwidth and LO Ranges

The Working Group has investigated the most recent research of several groups within and external to the ALMA partnership before reaching a conclusion on a realistic goal for the instantaneous bandwidth of the signal chain. We deliberately use the term instantaneous bandwidth, instead of IF bandwidth, in this context to emphasize that the entire signal chain should be capable of meeting this technical goal. All of this instantaneous bandwidth should be usable for science, and should be in one contiguous IF frequency range such that there need be no RF frequency gaps and no significant sensitivity loss due to filter roll-offs in the correlated bandwidth other than that between the two receiver sidebands.

Instantaneous Bandwidth: At least ≥ 8 GHz per IF polarization sideband (for 2SB receiver configurations), following the ALMA 2030 Development Roadmap. The Working Group strongly recommends to achieve 16 GHz per IF polarization/sideband (for 2SB receiver configurations).

Over this bandwidth, other key technical goals as specified in this document should also be met, especially receiver temperature (T_{RX}) , image rejection ratio and passband gain variations.

The proposed goal of an instantaneous bandwidth ≥ 16 GHz per IF polarization/sideband is at least four times larger than the current system requirement of slightly less than 4 GHz. How this 16 GHz instantaneous bandwidth is positioned in the IF range (e.g., 2 to 18 GHz or 4 to 20 GHz) is still to be determined and will depend on the architecture that provides the best performance (see Section 7.1 regarding the effect of the anti-aliasing filter). For some receivers, it is conceivable that a bandwidth smaller than 16 GHz per polarization/sideband may be determined to be scientifically optimum given performance (or cost) trade-offs against a 16 GHz bandwidth design. The Working Group states an absolute minimum requirement of 8 GHz per IF polarization/sideband so that all new receivers are at least compliant with the ALMA 2030 Development Roadmap. However, the Working Group strongly recommends that receiver designs strive to achieve the goal of 16 GHz per IF polarization/sideband. The Working Group also recommends that the signal chain downstream of the receivers be redesigned so as to meet this 16 GHz per polarization/sideband goal.

It is recommended that the allowed LO range of the new ALMA 2030 receivers should not be limited to the minimum range that can be covered by the expanded IF bandwidth but stretched beyond that in order to cover the same LO range of the corresponding legacy receiver. That is critically important for observations during the parallel deployment period of each receiver upgrade in order to allow for LO frequencies accessible to the combination of new and legacy receivers simultaneously. The performance of the new receivers outside the target RF range for that Band will be ignored and the Control software would disallow spectral windows to be placed there for normal science observations. It is foreseen that this will require rework of the

LO-solutions code of the ALMA Control software and of the Observing Tool which also require accurate knowledge of the allowed LO range.

6.4 Image Rejection Ratio

6.4.1 Current Requirement

The current ALMA requirement on sideband suppression in terms of sideband ratio (SBR) of the first mixer is:

- >10dB suppression over 90% of the IF frequency range, SSB and 2SB,
- >7dB suppression over 100% of the IF frequency range, SSB and 2SB, and
- <3dB difference across 80% of the combined IF and LO frequency ranges, DSB.

Although this level of SBR performance does limit the effect of atmospheric noise entering the signal sideband from the image sideband, it does not eliminate it entirely. Further improvements to the SBR would yield better sensitivity at many tunings in several ALMA bands. Better SBR performance would also help to reduce further the possibility of contamination of single-dish spectra by the presence of strong celestial lines in the image sideband, which is a non-trivial problem to solve in data analysis.

Note that as SSB T_{RX} requirements implicitly include an image sideband noise correction based on measured SBR [RD20, and ALMA receiver test procedures for each band], the effect of improved SBR for a given SSB T_{RX} on sensitivity is strictly via the atmospheric contribution to the T_{sys} . It should be noted that there can be tradeoffs between SBR and T_{RX} , e.g. optimization of SIS mixer operating parameters for balance to achieve best SBR, vs. optimizing those parameters to minimize T_{RX} . Whether the optimization for best SBR actually reduces T_{sys} depends on the relative T_{RX} and T_{sky} contributions. It is therefore necessary to exercise caution not to over-specify the SBR requirement.

6.4.2 Effect of improvements on sensitivity

As a simple illustration, we have computed the effect in each band of improving the SBR in terms of the reduction in observing time required to reach the same sensitivity. For bands containing a CO line that can be observed in either sideband (Bands 6, 7, 8 and 9), we use that line frequency, otherwise we use a frequency near the middle of the band.

Using the ATM atmospheric model in CASA, the appropriate PWV octile for observing each frequency, and the T_{RX} performance in the ALMA Cycle 7 Observing Tool, we employed the imageRejection function (available in the ALMA analysisUtils.py package) to compute the sensitivity improvement when observing at an elevation of 60 degrees at this frequency in USB, and again in LSB, and take the mean value. Table 12 shows the results for an SBR improvement to 15 dB from 10 dB. The reduction in observing time is quite significant (12% – 18%) in Bands 5 and 8. These numbers would improve to (16% – 25%) for an SBR of 20 dB. In the rest of the Bands, the improvement is 4% – 7%, which is equivalent to 2 – 4 antennas in raw

collecting area. These numbers improve to 5% - 10% (i.e., 3 - 5 antennas) for an SBR of 20 dB. We see that most of the benefit is already obtained by using a SBR of 15 dB.

6.4.3 New Technical Goal

Noting that no new receivers will be DSB, we require the following performance for all 2SB and SSB receivers:

- >15dB suppression over 90% of the IF frequency range
- >13dB suppression over 100% of the IF frequency range.

No stretch goal is specified, given the concern that over-specifying the SBR has the potential to be detrimental to T_{RX} and ultimately harm the sensitivity rather than improve it. Instead, each receiver upgrade project should aim for minimizing T_{sys} given the atmospheric and technical constraints of their frequency range.

Band	Frequency	T _{RX}	Octile (PWV [mm])	$DSB \rightarrow SSB (10 dB)$	$10 \rightarrow 15 dB$	$10 \rightarrow 20 \text{ dB}$		
	(GHz)	(K)		Observing tin	Observing time reduction (%)			
3	100	40	7 (5.186)		3	4		
4	140	42	6 (2.748)	N. A.	3	4		
5	195.3	50	5 (1.796)		15	20		
6	230.538	50	5 (1.796)		4	5		
7	345.796	72	3 (0.913)		6	8		
8	461.08	135	2 (0.658)		10	13		
9	691.47	210 (105 @ DSB)	1 (0.472)	45	5	7		
10	806.65	460 (230 @ DSB)	1 (0.472)	34	4	5		

Table 12: Estimated observing speed improvements by improving the image rejection to 15 dB and 20 dB.

6.5 Passband Gain Variations

The passband gain variations are defined as the frequency dependent gain variations related to the analog signal chain. This includes the optical path, the RF and IF path in the front-end subsystem, and all the way through to the input of the digitizer within the back-end. The frequency range to be considered for the gain variations is the IF range equal to the digitized frequency band (see Section 7) and includes all of the optical/RF/IF analog signal path upstream in the receiver. These passband gain variations are directly coupled with the requirements for quantization efficiency of the digitizer and the Effective Number of Bits (ENOB) as specified in Section 7. Note that some of the systematic gain variation e.g. slope across the IF band could be compensated for by an equalizer.

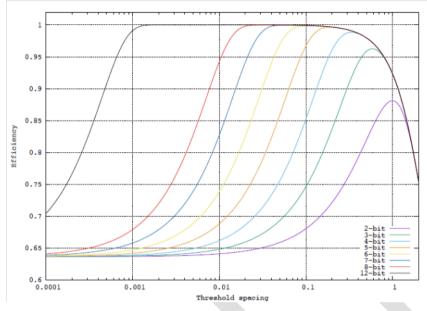


Figure 6: Quantization efficiency versus the threshold spacing (in units of the RMS noise prior to quantization) in the range 0.0001 to 2 for n = 2, 3, 4, 5, 6, 7, 8 and 12 bits^{3,4}.

High priority is given to improving the quantization efficiency as close as possible to 99% (see Figure 6). The ENOB is essentially set by what is commercially available, currently at least 5 bits to reach 8.4 dB of sample dynamic range and 99% quantization efficiency (see Table 13⁴).

Assuming that the sky-brightness variations during an observation are in the order of 3 dB, that would restrict the passband gain variations to 5.4 dB. Better sky conditions with variations in the order of 2 dB would allow for passband gain variations of up to 6.4 dB.

The original ALMA system requirement (272) called for < 8 dB peak-to-peak variation across each 2 GHz baseband, with 5 dB allocated to front-end and 3 dB to back-end, but the FE component of the requirement was later relaxed to 7 dB via change requests for most bands (1, 4, 5, 6, 7, 8, 9), with a further relaxation for Band 1 to 9 dB (Bands 2, 3 and 10 remain at 4 dB). Hence, restricting the passband gain variations to 5.4 dB over the much larger (up to 16 GHz) IF bands for the new generation receivers might be a difficult goal to reach.

The WG further studied this issue via an internal memo⁵, where the Band 6v2 receiver system ripple was analyzed and included both the component device ripple as well as the additional inter-stage spectral gain ripple that arises from component mismatch. Component-specific ripple was corrected to remove any linear frequency slope so as to be representative of the situation when using an IF equalizer.

³ From Internal Memo "Quantization efficiency and Impact of gain variations within the passband", Alain Baudry / Laboratoire d'astrophysique de Bordeaux (LAB)

⁴ Calculated based on the formulas of RD22. A <u>Jupyter Notebook by J. Santander-Vela</u> is available to show how Table 13 and Figure 6 are derived.

⁵ "Preliminary estimation of p-p ripple in the analog receiver system", Kamaljeet S Saini / NRAO

Finally, there is the question of whether all the ripple components should be summed up in quadrature (implies uncorrelated ripple, and is representative of an optimistic performance metric) or if the components should be added up algebraically (representative of tethe worst case performance). For the former case, ripple performance of the order of 4.7 dB could be achieved, whereas, for the latter case, the worst-case number could be as much as 12.7 dB.

The conclusion is that the 5.4 dB figure is difficult to achieve, but not necessarily impossible.

Based on these considerations, the Working Group recommends the following:

Passband Frequency-Dependent Gain Variations

Goal: $< 6.4 \, dB = 6.1 \, dB \, CCA + WCA + 1.0 \, dB \, IF \, switch + 1.5 \, dB \, cabling \, \&IF \, Proc$ Stretch goal: $< 5.4 \, dB = 5.1 \, dB \, CCA + WCA + 1.0 \, dB \, IF \, switch + 1.5 \, dB \, cabling \, \&IF \, Proc$

(Square root of the sum of squares technique is used in adding the component ripple above.)

Algebraically adding 2 dB sky-brightness variations⁶, the requirement value corresponds to 99% quantization efficiency as indicated in the following paragraph. Reaching the stretch goal of 5.4 dB would allow for sky-brightness variations of up to 3 dB, again allowing for 99% efficiency.

ENOB ηmin	2-bit	3-bit	4-bit	5-bit	6-bit	7-bit	8-bit	12-bit
99%	-	-	-	8.4 dB	14.7 dB	20.9 dB	26.8 dB	51.0 dB
96%	-	2.2 dB	11.0 dB	17.6 dB	23.7 dB	29.8 dB	35.9 dB	60.0 dB
92%	-	9.5 dB	16.7 dB	23.1 dB	29.3 dB	35.4 dB	41.4 dB	65.6 dB
85%	6.9 dB	16.5 dB	23.4 dB	29.8 dB	35.9 dB	42.0 dB	48.0 dB	72.2 dB

Table 13: Sampler dynamic range for a minimum quantization efficiency⁷

To provide better visualization of Table 13, a spline fit to the 5-bit column is illustrated in Figure 7, annotated with the recommended passband gain variation of 5.4 dB, allowing for 3

 6 We are adding algebraically the sky-brightness variation because one aspect of this phenomenon, the variation of T_{sky} with respect to time as an observation progresses, will push all frequencies up or down in brightness at the same time, which will be seen in full by the digitizer since the attenuators are held fixed during observations.

The other aspect, the variation of T_{sky} with respect to the radio frequency, can be significant across the digitized band, particularly since we are increasing the IF bandwidth to 8 GHz or 16 GHz. However, since the shape of this variation is independent of the hardware variations, this contribution can be added in quadrature. Todd Hunter has performed some calculations of the variation using the atmospheric model, with a coarse enough spectral resolution and IF tuning step (250 MHz) to suppress the effect of ozone line cores (since they can make the peak T_{sky} go quite high even though they occupy a small total bandwidth). With a 16 GHz bandwidth, the median peakto-peak ripple is about 1 dB in bands 2, 3, 9, 10, and 1.5 dB in band 4, 6. The other bands (5, 7, and 8) contain strong, broad atmospheric water lines that can lead to higher values of variation but require a more realistic analysis of typical tunings instead of a uniform grid.

⁷ From Internal Memo "Quantization efficiency and Impact of gain variations within the passband", Alain Baudry / Laboratoire d'astrophysique de Bordeaux (LAB)

dB of sky variation during the observation, and an estimate of the subsequent total digital efficiency.

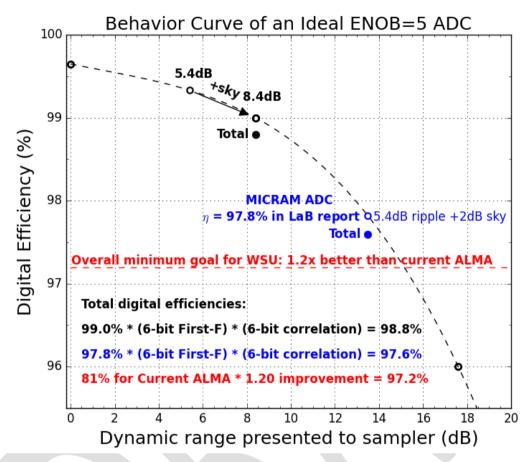


Figure 7: Illustration of the efficiency roll-off behavior of an ideal 5-ENOB ADC using the values from Table 13 (open black circles). The impact of the recommended requirements for front-end gain ripple on the efficiency is shown, along with the preliminary efficiency performance measurements of a high-speed digitizer studied by [RD21]. The subsequent estimates for the total digital efficiencies for each point include two factors of 6-bit efficiency (0.99895) using the factors from [RD22]. Additional potential sources of efficiency loss (such as imperfect delay correction) are not included, but are expected to be small.

To illustrate that the recommended goal is fairly challenging, a survey of the full IF band passband ripple of the existing baseline receivers tested at the NA FEIC (representative of all ALMA receivers) was carried out. The analysis⁸ involved binning the measured peak-to-peak full IF band ripple in 0.5 dB increments for each LO setting, and computing the percentage of settings per band that would result in ripple of larger than 5 dB. Analysis was carried out for both un-equalized and equalized (linear gain slope removed) cases.

Table 14 summarizes the results of the analysis.

⁸ K. Saini, J. Effland, "IF Power Variation of ALMA Front Ends", presentation to the FE/Digitizer WG.

Note that there are many more measurements than cartridges, and that even a single LO setting resulting in a measurement above the specification would result in a non-compliant performance and/or cartridge.

Table 14

This analysis supports the conclusion that achieving the stated passband gain variation requirement will be difficult, and likely to result in CREs/waivers at the time of PDR/CDR if adopted as a specification. Nevertheless, it is a goal to aim for.

ALMA Band	IF Range (GHz)	% above 5dB (non-equalized)	% above 5dB (equalized)
Band 3	4–8	0.0%	0.0%
Band 4	4-8	10.4%	7.3%
Band 6	6–10	23.9%	23.9 %
Band 7	4–8	3.5%	1.4%
Band 8	4-8	32.3%	7.1%
Band 9	4–12	49.2%	43.8%
Band 10	4–12	27.9%	22.4%

Table 14: Percentage of measurements (LO settings) resulting in passband gain variation above 5 dB

7 DIGITIZER

The signals from the front-end at each antenna will pass through an IF selector switch with amplitude gain settings. Analog, continuous gain setting should be feasible, assuming that it is stable. The gain setting accuracy and settling time of gain changes should be defined. The requirements for S/N, efficiency, and ENOB need to be specified according to characteristics of input signal (white noise).

7.1 Digitizer Sampling Speed

Considering the strong desire to avoid a second down-conversion stage, as is implemented in the current ALMA system, the instantaneous bandwidth as defined in Section 6.3 of this document should lie within the first (or, in theory but practically speaking unlikely, second) Nyquist band of the digitizer. Assuming that the Nyquist frequency is equal to an upper instantaneous bandwidth goal of 20 GHz (e.g., to cover an IF Band of 4 to 20 GHz), the sampling frequency should be at least 40 GSps.

Digitizer Sampling Speed: ≥ 40 GSps

It might be that a single digitizer core cannot achieve the required performance in terms of ENOB at the specified digitizer sampling speed (see Section 7.2). As an alternative to a single core digitizer, interleaved or dual-rate digitizer architectures can be considered as long as they achieve the applicable goals as provided in this document.

It should be noted that the anti-aliasing filters roll-off will likely limit the IF response to a value lower than the Nyquist frequency of 20 GHz. The practical cut-off frequency of the antialiasing filter will primarily be determined by a) filter technology and b) system requirements on suppression of spurious signals. This IF upper cut-off will impose a limitation on any new receivers designed with an instantaneous IF band extending up to 20 GHz.

A second down-conversion stage is not favored due to the increased complexity, costs and practical issues with internally generated spurious signals due to a second local oscillator.

7.2 Effective Number of Bits (ENOB)

The ENOB to be achieved for the digitizer is a major technological challenge, recognizing the strong desire to increase the quantization efficiency to at least 99% for standard astronomical observations (excluding solar and calibration) from the current 96%.

The digitizer performance matching our astronomical requirements, including continuous sampling at the rate specified in Section 7.1 with very low spurious levels, is a niche market for commercial devices. Considering the ongoing evaluation of COTS devices and market forecasts, we have come to the following, conservative *technical goal*, together with an additional *stretch goal* that would allow to keep the quantization efficiency above 99% even in the case where the passband gain variation requirement was difficult to meet (see Section 6.5):

Effective Number of Bits ⁹ :	\geq 5 (ENOB specified under the assumption of
	noise, with Gaussian distribution, as the input
	signal)
Stretch Goal: Effective Number of Bits:	≥ 6 (ENOB specified under the assumption of
	noise, with Gaussian distribution, as the input
	signal)

This performance should be achieved at the Digitizer Sampling Speed specified in Section 7.1. The Working Group believes that a conservative approach is justified on the basis of how the commercial market for these very fast digitizers has developed over the last 3 - 4 years and what has been announced for the future.

An ASIC development for a suitable digitizer, even based on an already developed IP core, is most likely out of reach of ALMA unless substantial funding (> 10 MEUR) and research effort is made available for its development.

⁹ A limitation of using ENOB is that it depends on the properties of the input signal. Digitizer data sheets commonly specify ENOB for a sinusoidal (continuous wave) input signal while the input signal for ALMA's applications has a Gaussian-like amplitude distribution. This dependence on the input signal properties applies as well to quantization efficiency, at least for practical situations where the number of quantization levels (i.e. ENOB) is limited. A more practical, compelling reason for using ENOB is that it directly provides the minimum number of bits that comes out of the digitizer and that needs to be processed by the digital transmission system and the correlator. Therefore, ENOB provides a clear requirement for the other systems, while specifying quantization efficiency would require a cumbersome translation.

7.3 Interface between Digitizer and Back-end / Correlator

It is urgent to specify at least the bit width and data rate transferred to the correlator. To allow for maximum flexibility, a simplistic approach is considered as a first proposal to the Correlator Requirements Working Group. The simplistic approach means that all ENOB available from the digitizer, without any digital processing at the antennas, will be sent to the back-end/correlator. Technically this is feasible using 400 Gbit/s ethernet channels (e.g., the 400ZR/IEEE 802.3cw standard supports Dense Wavelength Division Multiplexing of 400Gb/s channels on a single mode fiber up to 80km in length), but might have additional costs. The Working Group will converge on this goal in consultation with Correlator Requirements Working Group and the AMT at a later time.

However, at the ALMA 2030 Correlator Workshop, there was a near consensus that a first "F" will be necessary (i.e., FFX architecture). There was a concern expressed about adding complexity to the antennas. Performing the initial Fourier transform at the antenna may result in an efficiency loss (depending on the number of bits preserved), however most felt that the savings in electronics complexity for the overall new design would still yield a net improvement. Final data transport requirements should drive the final answer in this regard.

8 OTHER PERFORMANCES

8.1 ALMA Polarization Performance

8.1.1 On-axis and off-axis instrumental polarization

Current requirements for the on-axis and off-axis instrumental polarization come from the polarization science requirement of 0.1%. This requirement has been achieved for small-field linear polarization, but the current achieved systematic uncertainty for circular polarization is 0.6%. ALMA is unlikely to detect Zeeman splitting in most sources at this level of accuracy. If future testing can demonstrate that an uncertainty of 0.1% can be achieved in circular polarization, it would be valuable to specify for future receivers a more ambitious goal of 0.03% (1 sigma error) to improve the robustness of circular polarization observations. This will tighten the on-axis instrumental polarization to $D\sim3\%$ while the current requirement is D=10% (in voltage; see Revised ALMA System Technical Requirements – Polarization [RD14]).

ALMA recent polarization mosaicking tests indicate the actual error on the polarization image outside of 1/3 FWHM is as good as 0.3%. If the new receivers can achieve $D\sim3\%$ at on-axis, we can probably achieve 0.1% accuracy at off-axis as well after the on-axis cross polarization is removed. Tightening beam squint performance will also help to achieve this goal. An analysis of the effect of beam squint on wide field polarization is presented in [RD14]. The linear feed beam squint leads to a spurious Stokes Q gradient across the beam of each array element. While a systematic squint that is common to all array elements is feasible to calibrate during imaging, variations from receiver to receiver would be much more difficult to reliably measure and compensate, and without doing so there is increased calibration errors over the field of view and spurious Stokes Q signal. In [RD14], it is recommended to keep RMS repeatability of beam squint to no more than 0.4% FWHM to keep the impact negligible when

imaging to the -6dB field of view, or correspondingly about 0.6% FWHM for imaging to the half power point. Such small values are potentially difficult to achieve, and a requirement on repeatability would not be practical to test as it requires all receivers to be present to determine the systematic squint.

Figure 8 shows scatter plots of the 2D on-sky Y-X polarization squint for the existing receivers. As expected, OMT (single feedhorn) bands are considerably better; e.g., compare Band 8 (OMT) with bands 7, 9, and 10 (wire grid). Based on these statistics, a technical goal of 2% FWHM squint instead of the current 10% FWHM would be quite straightforward to achieve if OMTs are to be assumed for all bands (implying a change for bands 7, 9, and 10). This would also imply an RMS repeatability that is considerably better than the peak 2% FWHM limit, close to the desired goal from [RD14], while being testable for individual receivers and array elements. It may also be possible to meet the 2% FWHM requirement with tightened alignment tolerances of wire grid (2 feedhorn) designs, which may still be the best choice for bands 9 and 10 due to the receiver noise impact of waveguide losses in an OMT.

At least for the receivers with OMTs, there seems to be little room to improve the performance. The random component in the beam squint will be hard to quantify and control too much beyond existing values.

Figure 8: Scatter plots of the 2D on-sky Y-X polarization squint in units of percent of the beam FWHM at the measurement frequency indicated in the axis labels.

8.1.2 Optics: Pointing offset

In addition to tightening the squint requirement, another front-end requirement that we highlight is the receiver alignment with respect to the center of the aperture (i.e., the "illumination offset" or "pointing offset"), which Richard Hills noted was missing from the requirements on the early bands (Bands 3, 4, 6, 7, 8, 9, and 10) in his document [RD15]. This requirement was added to the Band 5 requirements (and Band 1 and Band 2+3¹⁰ requirements) as "5.9.1.1.3. Pointing offset".

8.2 System Internal Spurious Signals

An update of the requirements limiting the level of internally generated spurious signals based on science requirements is appropriate. But it is emphasized that at this moment no complete flow-down from science requirements is feasible. The System Requirements document, version C [RD16] tries to address this issue, but for a science justification of spurious levels, it refers to another document (Revised ALMA System Technical Requirements - Spurious Signals, [RD17]) which has not been formally reviewed and released.

The need for an update of these spurious signals requirements is illustrated by current issues like the spurs generated by local oscillators of the WVR and the second down-conversion stage. The issue is likely to become critical for future receiver systems that have a wider IF bandwidth with upper frequencies of ~20 GHz, which overlap with the first LO fundamental frequency, and for future sampling electronics at 40 GHz.

For defining limits on internally generated spurious signals, one option is to adopt the values as defined by ITU Recommendation ITU-R RA.769-2. In this way the same RFI limits as advocated for external spurious signals would also apply for system internal spurious signals. Following this approach would also put the JAO in a stronger position towards other services generating interference in defending the frequency bands in which ALMA is operating.

However, it is noted that the ITU recommended RFI limits are challenging to meet and a more relaxed set of requirements for ALMA system generated interference is preferred on practical grounds. In the latter case, technical requirements must flow down from widely accepted science requirements.

9 SOME ADDITIONAL PERFORMANCE ISSUES

9.1 Out-of-band IF signal

¹⁰ FEND-40.02.02.00-0048-A-SPE, https://aedm.alma.cl/download/iaVmp0q06U1660337668466/

Assuming that the new digitizer has a 2 - 19.5 GHz input filter, the IF signal from the legacy receivers will now be acquired including out-of-band frequencies. For example, a legacy receiver with nominal 4 - 8 GHz IF band will now be sending additional frequency ranges at 2 - 4 and 8 - 19.5 GHz to the digitizer. The new IF switch will need to work up to 20 GHz and will no longer provide any cut off above 12 GHz. The original ALMA requirement is that the output power from 10 MHz to 18 GHz shall be within 3 dB of the in-band power. This requirement seems to be met by all bands (see Figure 9), so additional out-of-band power from legacy receivers may not represent a problem that cannot be fixed by appropriate optimization of the power input to the digitizer via programmable attenuators.

The existing IF power specifications (FEND-40.00.00-00140-00/AT) need updated to account for the larger proposed IF frequency range and wider bandwidth components in the IF signal chain. In particular, the out of band part of the specification currently considers only 10MHz to 18GHz, the upper end of which is within the new IF range proposed in this report (up to 20GHz). Due to the transition phase, it is necessary to also maintain compatibility with the existing IF switch and Back-End, while also considering implications for the new system. The goal of the out of band power requirement is to limit compression of active elements in the IF signal chain prior to filters such as the anti-aliasing filter in the new system, or the IF filters (4GHz HPF and 12GHz LPF) in the legacy IF switches. For the new system, amplifiers with good performance up to 20GHz are needed, which in general may have significant response up to almost 30GHz. The proposed *technical goal* retains the same in-band total IF power as the existing specification, over the broader proposed IF, in order to avoid any increased compression in the legacy system. The out of band *technical goal* is changed to only consider frequencies above 20GHz.

For load temperatures between 10 and 800K at the RF input of the cartridge, the IF output power of the Front End (measured at the Front End IF outputs) shall comply with the following requirements:

- Total power in the IF frequency range:
- Total power in the frequency range 10MHz to 30 GHz:

-32 to -18 dBm < -15 dBm

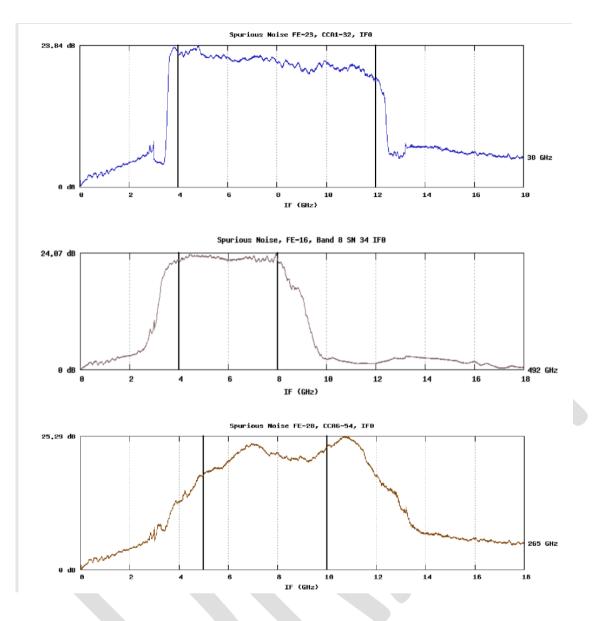


Figure 9: The plots show the front-end IF output power measured with the spectrum analyzer on the FETMS at the OSF, in a Band 1 (top), a Band 8 (middle), and a Band 6 (bottom) receiver (random choice). It can be seen that the out-of-band signal is several dB lower than the in-band signal and the cut-off is mostly from the bandpass filters of the receivers more than from the IF switch (at 12 GHz).

9.2 YTO ranges and LO parking options

In Sect. 6.3 this Working Group recommends to achieve the goal of 16 GHz IF bandwidth, Assuming the IF lower edge at 4 GHz, that means an IF band from 4 to 20 GHz, as considered in the definition of the requirement for the digitizer sampling speed given in Sect. 7.1. Other design solutions, however, could be possible, e.g. 2 - 18 GHz, subject to the hardware capabilities and design choice of the receiver manufacturers. An IF range lower than 4 - 20 GHz would have the advantage to minimize the risks of spurs due to interference from the YTO of legacy receivers, both in-band and out-of-band. The plot in Figure 10 shows the YTO ranges

of all 10 Bands receivers, including receiver Band 6v2. It is evident that when considering an IF range from 4 to 20 GHz it is impossible to park the LO frequency of receivers Bands 3, 5, 6, 10 outside of the IF range¹¹. The Working Group recommends that the impact of the YTO range on the IF range should be considered with high priority in the design of the new receivers and, in general, in the implementation of the Wideband Sensitivity Upgrade.

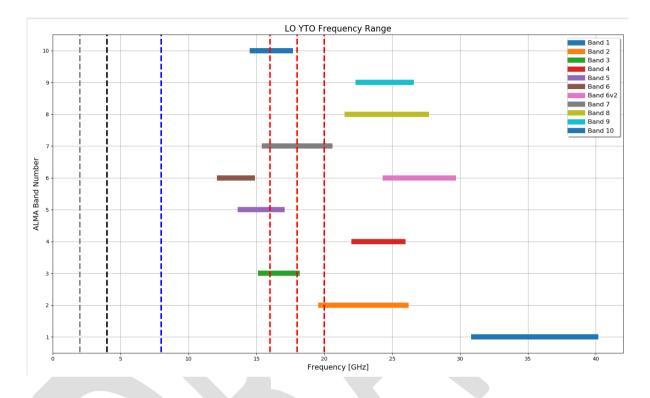


Figure 10: YTO frequency ranges of all 10 ALMA Bands, including receivers Band 6v2 and Band 2 (in development). The blue vertical line shows the 8 GHz upper edge of the legacy (2SB) IF band. The red vertical lines show possible IF upgrade scenarios up to 16, 18, 20 GHz respectively. The gray vertical line shows the alternative lower IF edge at 2 GHz.

¹¹ For Band 2, the LO frequency range starts slightly below 20 GHz, but that is due to extra LO range (see last paragraph of Section 6.3) to be used exclusively while using legacy bands during the transition period.

10 ANNEX: CHARGE OF THE FE/DIGITIZER WORKING GROUP

Request for the Front-end/ Digitizer Working Group

a) Objectives:

Update the document "Report of the ALMA Front-end & Digitizer Requirements Upgrade

Working Group" (ALMA-05-00-00.0048-A-REP) in order to assess the following topics that have been identified by the Integrated Development Team (IDT):

1. List of inaccuracies and missing scope in FE Digitizer report:

0) The entry for the existing Trx requirement for Band 10 in Table ("230 K DSB") is incomplete it does not account for the CRE (FEND-40.02.10.00-0124-A-CRE) which explicitly limits the 80% range to be within 787-905 GHz, and that the higher value for 100% applies from 905-950 GHz. In Figure 5, this distinction appears in part, in that the red line stops at 905 GHz, but the y-axis range is not high enough to show the rest of the red line at 2*344 K. The caption to this figure should also be clarified to highlight this point.

1) Currently we only give a stretch a goal for 1 quantity (IF bandwidth). No stretch goals are provided for Trx, gain slope, or sideband separation quality.

2) In terms of science flexibility for achieving specific line combinations, it would be advantageous to allow the new wider basebands of ALMA2030 receivers to be tuned partially beyond the official RF range of the receiver, even though science spectral windows will not be allowed to be placed there. Stated in a different way, the allowed LO range of the ALMA2030 receivers should not be reduced to the minimum range that would cover the IF because that would mean that several GHz at the edges of the current RF range would no longer be accessible to the combination of the new and legacy receivers, and during the parallel deployment era would suffer. There are two impacts: (a) ALMA2030 receiver performance should be tested by the manufacturer over the current LO range, but can ignore the performance at IF values beyond the target RF range for that Band; (b) The LO Solutions code of the control software, and the Observing tool which also relies on it, need to further distinguish between the RF edges and the new IF edges.

3) There are several important issues with legacy receivers in the context of ALMA2030 backend upgrade:

a) In section 6 on passband gain variations, we set a goal for < 5.4 dB variation across the whole IF. looked back at the original ALMA system requirement (272) which called for < 8 dB peak-to-peak variation across each 2 GHz baseband for the combination of FrontEnd and BackEnd. 5 dB was allocated to Front End and 3 dB to Back End, where the 3dB was an rss combination of 1.2dB for DTX and 2.7dB for IFPS/coax (BEND-02720-00/RT). The FE component of the requirement was later relaxed to 7 dB via change requests for most bands (1,4,5,6,7,8,9). Band 1 was further relaxed to 9 dB (ALMA-40.02.01.00-0249-A-CRE). On

wider scales, the spec on the whole IF ranges from <10 to <12 dB as a function of Band. So our proposed new requirement of 5.4 dB across the whole IF is a significant tightening of the spec on both scales. The legacy receivers will be out-of-spec by as much as 12-5.4 = 6.6 dB. Interpolating from Table 13 on page 22, the quantization efficiency for the legacy receivers with a 5-ENOB digitizer would then drop from 99% to 97% for the parts of the band with lowest IF power. I think it is important to point out this fact, otherwise readers might wrongly conclude that all ALMA receivers (old and new) will get the full efficiency benefit of the new system. There is a competing effect whereby the oversampling of a lower bandwidth input signal can raise the apparent efficiency (James Lamb's ALMA memo 407) but this would need to be explored quantitatively.

b) In section 7.1, we state an example IF band of 4-20 GHz, driven primarily by the fact that the lowest IF in current receivers is 4 GHz and that lower values of fmax/fmin often enable better performance. But other ranges are conceivable, as we state in section 6.3 (2-18 GHz).

In fact, perhaps motivated by our example, the Final Study Report from the Bordeaux group released last month proposes an anti-aliasing filter response of 2-19.5 GHZ. We do not mention any details of the anti-aliasing filter in our document, but there are 2 important implications (c and d below):

c) We did not allow for any filter roll-off at the upper edge of the IF, so a 40 GSps digitizer will only enable a flat IF response up to \sim 19.5 GHz, not 20 GHz. I think we should add a caveat to the report for this point. This is an issue for new receivers that may reach 20GHz IF, but not an issue for the legacy receivers.

d) We have not mentioned that a wide range of out-of-band IF signal from the legacy receivers will now be seen by the new digitizer. For example, with a filter of 2-19.5 GHz, the legacy Bands with IF=4-8 GHz output will now be sending 2–4 and 8–19.5 to the digitizer, because there is no low pass or high pass filter to cut off the out of band power. Because the new IF switches will need to work up to 20 GHz, they will no longer provide any cut off above 12 GHz. There is a spec on output power from 10MHz-18GHz having to be within 3 dB of the inband power, which I think is met by all bands, so this may not represent a problem that cannot be fixed by appropriate setting of the power input to the digitizer. But strong tones from legacy YIGs could get through and affect digitizer performance even though we ignore that part of the IF downstream. It seems worth at least mentioning in our report to look out for this possibility.

2. Ripple specifications:

- IF power variation (ripple) in the Band6v2 cartridge (see e-mail exchange Todd / Gie Han 30/03/2022, 01/04/2022, 04/04/2022)
- Band 2 prototype would not meet the proposed tighter WSU ripple spec RID1781
- Still need a budget to allocate some of the ripple to the BE components (IF switch, IF cables, digitizer). For reference, the existing ALMA budget is 2.7dB for IFProc and 1.2dB for digitizer.

b) Deliverables requested

- An update for the following 2 documents is requested, and the inclusion in the system AEDM:
 - ALMA-05-00-00.0048-A-REP "Report of the ALMA Front-end & Digitizer Requirements Upgrade Working Group"
 - ALMA-40.00.00.00-001-B-SPE "Front End Sub-system for the 66-Antenna Array Technical specifications"

c) Suggested membership:

Continuation of the current FE/Digitizer WG members (see ALMA-05-00-00.0048-AREP), with Giorgio Siringo as suggested chairman, and Takafumi Kojima in replacement of Shin'ichiro Asayama.