Calibration basics

Rosita Paladino Italian ARC node

ALMA Science Archive School

Observed visibilities differ from true visibilities

- atmosphere
- electronics

The Fourier transform of raw visibilities of a point source

The Fourier transform of raw visibilities of a point source

look far from what it should

The calibration consists in

• measuring the effects of the various corruptions on the observed visibilities

$$V^{ij}_{obs}(v,t) = G^{ij}(v,t) \quad V^{ij}_{true}(v,t)$$

G = B J D E P T

T=troposphere P=parallactic angle (alt-az mounting) E=antenna voltage pattern D=polarization leakages J= electronic gains B=bandpass response

The calibration consists in

- measuring the effects of the various corruptions on the observed visibilities
- some factors can be predicted or directly measured

$$V^{ij}_{obs}(v,t) = G^{ij}(v,t) \quad V^{ij}_{true}(v,t)$$

T= troposphere

P=parallactic angle (alt-az mounting) E=antenna voltage pattern D=polarization leakages J= time-dependent gains B=bandpass response

The calibration consists in

- measuring the effects of the various corruptions on the observed visibilities
- some factors can be predicted or directly measured
- others can be determined by observing a calibration source during the observing period

$$V^{ij}_{obs}(v,t) = G^{ij}(v,t) \quad V^{ij}_{true}(v,t)$$

$$G = B J D E P T$$

T= troposphere P=parallactic angle (alt-az mounting) E=antenna voltage pattern D=polarization leakages J= time-dependent gains B=bandpass response

Typical execution structure

factors that can be predicted or directly measured

wvr Pointing Tsys

Typical execution structure

wvr Pointing

Tsys

Atmospheric transmission is not a cm problem @ λ > cm

Atmospheric transmission is not a problem (\emptyset) λ > cm

but it would be @ ALMA bands in the VLA site

VLA bands

At the ALMA site the chances to observe at Band 10 increase!

The transmission curve changes with Precipitable Water Vapor content in the atmosphere!

• attenuation

Effective system noise temperature

$$\mathsf{T}_{\text{sys}} \sim \mathbf{e}^{\tau} \left[\mathsf{T}_{\text{atm}} \left(1 - \mathbf{e}^{-\tau} \right) + \mathsf{T}_{\text{rx}} \right]$$

opacity

emission from atmosphere

Tsys factors below atmosphere

• attenuation

Effective system noise temperature

opacity

emission from atmosphere

Tsys factors below atmosphere

• attenuation

Effective system noise temperature

opacity

emission from atmosphere

Tsys factors below atmosphere

-> Amplitude Calibration Device

Measure ${\rm T}_{\rm sys}$ and ${\rm T}_{\rm rx}$ for each antenna

• attenuation

Effective system noise temperature

opacity

emission from atmosphere

Tsys factors below atmosphere

• phase noise

PWV variations cause phase fluctuations resulting in:

• phase shift

 $\varphi_e \approx \frac{12.6\,\pi}{\lambda} \cdot pwv$

• low coherence

$$\varphi_{rms} = \frac{K b^{\alpha}}{\lambda}$$

water vapor radiometer

Only on 12m antennas Allow to measure pwv

PWV variations cause phase fluctuations resulting in:

• phase shift

 $\varphi_e \approx \frac{12.6\,\pi}{\lambda} \cdot pwv$

low coherence

$$\varphi_{rms} = \frac{K b^{\alpha}}{\lambda}$$

Troposphere's effects corrections

• wvr radiometer

Four "channels" flanking the peak of the 183 GHz water line

Data taken every second

J1617-5848, J1744-3116 (AMPLITUDE, BANDPASS, PHASE)

Typical execution structure

factors determined observing a calibration source

Polarization

Amplitude Bandpass Check Phase

Basic assumptions of calibration

$$V^{ij}_{obs}(v,t) = G^{ij}(v,t) V^{ij}_{true}(v,t)$$

• The complex gains $G^{ij}(v,t)$ can be approximated by the product of the two associated antenna-based complex gains

Basic assumptions of calibration

$$V^{ij}_{obs}(v,t) = G^{ij}(v,t) V^{ij}_{true}(v,t)$$

- The complex gains $G^{ij}(v,t)$ can be approximated by the product of the two associated antenna-based complex gains
- Visibilities and gains are complex numbers so we need to determine amplitudes a and phases 0 of gains

$$A_{ij}^{obs} e^{i \phi_{ij}^{obs}} = A_{ij}^{true} a_i a_j e^{i(\phi_{ij}^{true} + \theta_i - \theta_j)}$$

Basic assumptions of calibration

$$V^{ij}_{obs}(v,t) = G^{ij}(v,t) V^{ij}_{true}(v,t)$$

- The complex gains $G^{ij}(v,t)$ can be approximated by the product of the two associated antenna-based complex gains
- Visibilities and gains are complex numbers so we need to determine amplitudes a and phases 0 of gains

$$A_{ij}^{obs} e^{i \phi_{ij}^{obs}} = A_{ij}^{true} a_i a_j e^{i(\phi_{ij}^{true} + \theta_i - \theta_j)}$$

• The frequency and time dependence of the gains are independent of each other

$$G^{i}(v,t) = B^{i}(v) J^{i}(t)$$

How calibration works

• To solve this equation we observe sources for which we know the true visibilities amplitudes A_{model} and phases θ_{model}

$$A_{obs}^{ij} e^{i \theta_{obs}^{ij}} = A_{model}^{ij} a^i a^j e^{i(\theta_{model}^{ij} + \theta^i - \theta^j)}$$

• Observing a point source at the phase center

$$\theta_{\text{model}} = 0$$

• Consider a normalized amplitude

Calibrators – The ALMA observatory selects the most appropriate for each project

Amplitude

Target with known flux density Anywhere in the sky. (Solar System objects in the past, now grid sources) One scan only, typically at the beginning of observations

Bandpass

Bright object (typically quasar) with no spectral features Within ~30 deg of the science target One scan only, typically at the beginning of observations

Phase

Close to the target in the sky. Within few deg of the target (<5 deg in Band7 — <3 deg in Ban 10) observed before and after the target (**cycling time depends on freq and baseline length**)

Check

For observations with angular resolution < 0.25" or freq > 400 GHz **Bright source**, at a similar distance from the phase calibrator as the target. Observed two or three times per EB.

Reference antenna

- No absolute phases are measured but differences between the phases of antennas in a baseline
- A reference antenna need to be chosen. It will have by definition phase zero at all times

It must be chosen at the center of the array

Bandpass calibration

amplitude

 $A_{mod}(v) = 1 \text{ and } \theta_{mod}(v) = 0$

Bandpass calibration

phase

$$A_{mod}(\gamma) = 1$$
 and $\theta_{mod}(\gamma) = 0$

$$\theta^{ij}_{obs} = \theta^i + \theta^j + \theta^{ij}_{mod}$$

$$\theta^{ij}_{cal} = -\theta^i - \theta^j + \theta^{ij}_{obs}$$

Bandpass calibration

 In the weblog you can see the gains for each antenna and each spw

90%

Ant18: DA62, spw17, field 1: J0519-4546, scan6 07:31:59

PWV 0.45mm, airmass 1.728

XX

YY

25

frequency

Observed regularly before and after target scans

As for the bandpass The calibrator is observed at the **phase center**

$$A_{mod}(t) = 1 \text{ and } \Theta_{mod}(t) = 0$$

We can determine **for each scan** on the calibrator the amplitude correction J^{i}_{A} and the phase correction J^{i}_{θ}

Calibrator observed regularly before and after target scans

Coherence time

is the time between each phase calibrator's observation. Shorter at higher freq and longer baselines

Calibrator observed regularly before and after target scans

Coherence time

is the time between each phase calibrator's observation. Shorter at higher freq and longer baselines

• Solutions J^i_A and J^i_θ are applied to all the visibilities of the target using a **linear interpolation**

 In the weblog you can see the gains for each antenna and each spw

time

time

Bandpass and Time-dependent gain applied

 In the weblog you can see the calibrated visibilities for each calibrator for each spw

trequency

for all calibrators (in particular the bandpass calibrator) should be **flat**

Bandpass and Time-dependent gain applied

• In the weblog you can see the calibrated visibilities for each calibrator for each spw

Bandpass and Time-dependent gain applied

time

• In the weblog you can see the calibrated visibilities for each calibrator for each spw

Bandpass and Time-dependent gains applied

 In the weblog you can see the calibrated visibilities for each calibrator for each spw

time

for all calibrators should be around **zero**

the scatter (< few tens of deg) depends also on the calibrator's brightness

CHECK source

If a check source is observed in the weblog you find images per spw

• and fluxes

Field	Virtual SPW	Bandwidth (GHz)	Position offset (mas)	Position offset (synti beam)	Fitted Flux Density (mJy)	lmage S/N	Fitted [Peak Intensity / Flux Density] Ratio	gfluxscale mean visibility	gfluxscale S/N	[Fitted / gfluxscale] Flux Density Ratio
J1752-2956	19	1.875	5.73 +/- 0.54	0.03 +/- 0.003	30 +/- 0	234.88	0.97	30.68 +/- 0.17	175.88	0.96
	21	1.875	5.95 +/- 0.52	0.03 +/- 0.003	29 +/- 0	247.87	0.97	30.08 +/- 0.16	191.36	0.97
	23	1.875	4.83 +/- 0.50	0.03 +/- 0.003	29 +/- 0	246.38	0.98	30.09 +/- 0.17	182.25	0.96
	25	1.875	5.37 +/- 0.58	0.03 +/- 0.003	29 +/- 0	216.20	0.96	29.86 +/- 0.19	155.86	0.96

fitted flux density

visibility flux density

Standard calibration limitations

- Time-dependent gains applied to the target are estimated on the "phase" calibrator observed in
 - ≠ position≠ times

Based on the assumption that atmospheric conditions change linearly in time. Reasonable but not always true!

- Self-calibration may be necessary to improve calibration and image fidelity
- For time dependent projects the calibration intervals must be carefully considered

Where to find the calibration's diagnostic plots

	Group OUS uid://A001/X15c6/Xb9						
	🔻 📄 🚞 Member OUS uid://A001/X15c6/Xba	2022-08-08					
	— — — — — — — — — — — — — — — — — — —						
	🥑 🕒 readme	member.uidA001_X15c6_Xba.README.txt					
	🕨 🧭 📄 product	2021.A.00020.S_uidA001_X15c6_Xba_001_of_001.tar					
auxiliary	💌 📄 💾 auxiliary	2021.A.00020.S_uidA001_X15c6_Xba_auxiliary.tar	Ę				
	🕞 💾 calibration	member.uidA001_X15c6_Xba.hifa_calimage_renorm.auxproducts.tgz					
	🕞 💾 calibration	member.uidA001X15c6Xba.session1.caltables.tgz					
	🔲 💾 calibration	uidA002_Xfc69ac_X1af2.ms.calapply.txt					
	🖸 💾 calibration	uidA002_Xfc69ac_X1af2.ms.flagversions.tgz					
	🕞 💾 calibration	uidA002_Xfc69ac_X1f29.ms.calapply.txt					
	Calibration	uidA002_Xfc69ac_X1f29.ms.flagversions.tgz					
	🖸 💾 calibration	uidA002_Xfc69ac_X23ed.ms.calapply.txt					
	🖸 💾 calibration	uidA002_Xfc69ac_X23ed.ms.flagversions.tgz					
	🖸 💾 script	member.uidA001_X15c6_Xba.calimage.product_rename.txt					
	🖸 💾 script	member.uidA001X15c6Xba.hifa_calimage.pldriver_report.xml					
	🕞 💾 script	member.uidA001_X15c6_Xba.hifa_calimage_renorm.casa_piperestorescript.py					
	🕞 🕒 script	member.uidA001X15c6Xba.hifa_calimage_renorm.casa_pipescript.py					
	🖸 💾 script	member.uidA001_X15c6_Xba.hifa_calimage_renorm.pipeline_manifest.xml					
	🔲 💾 script	member.uidA001_X15c6_Xba.hifa_calimage_renorm.pprequest.xml					
	🔲 💾 script	member.uidA001_X15c6_Xba.scriptForPI.py					
	🖸 💾 log	member.uid <u>A001_X15c6_Xba.hifa_calimage_renorm.casa_commands.log</u>					
qa	🗹 📔 qa	member.uid A001_X15c6_Xba.hifa_calimage_renorm.weblog.tgz					
	🔲 💾 qa	member.uid <u>A001_X15c6_Xba.qa2_report.pdf</u>					
	🔲 💾 qa	uidA002_Xfc69ac_X1af2.ga0_report.pdf					
	🔲 💾 qa	uidA002_Xfc69ac_X1f29.qa0_report.pdf					
	🔲 💾 qa	uidA002_Xfc69ac_X23ed.qa0_report.pdf					
	🖸 💾 raw	2021,A.00020.S uid A002 Xfc69ac X1af2.asdm.sdm.tar					

member.uid_bla_bla_bla.weblog.tgz

Where to find the calibration's diagnostic plots

member.uid__bla_bla.weblog.tgz -> index.html

	Home By Topic By Task							
D T I	ask Summaries							
By Task								
	Task	QA Score						
	1. hifa_importdata: Register measurement sets with the pipeline	(1.00)						
	2. hifa_flagdata: ALMA deterministic flagging	0.94						
	3. hifa_fluxcalflag: Flag spectral features in solar system flux calibrators	1.00						
	4. hif_rawllagchans: Flag channels in raw data	1.00						
	5. hif_refant: Select reference antennas	1.00						
	6. h_tsyscal: Calculate Tsys calibration	1.00						
	7. hifa_tsystlag: Flag Tsys calibration	0.98						
	8. hifa_antpos: Correct for antenna position offsets	1.00						
	9. hifa_wvrgcalflag: Calculate and flag WVR calibration	1.11x improvement 0.56						
bandnass	9 10. hif_lowgainflag: Flag antennas with low gain	1.00						
Danupass	11. hif_setmodels: Set calibrator model visibilities	1.00						
	9 12. hifa_bandpassflag: Phase-up bandpass calibration and flagging	0.98						
	13. hifa_bandpass: Phase-up bandpass calibration	(1.00)						
	14. hifa_spwphaseup: Spw phase offsets calibration	(1.00)						
	15. hifa_gfluxscaleflag: Phased-up flux scale calibration + flagging	0.99						
	16. hifa_polcalflag: Polcal outlier flagging	1.00						

Why Is calibration needed?

What

are the main assumptions and limitations?

How

is calibration done?

Where are calibration results?

Calibration is needed to correct observed visibilities for the electronic and atmospheric effects

- corruptions in time and frequency are independent from each other
- gains are antenna NOT baseline dependent
- atmospheric corruptions estimated using the phase calibrator change linearly in time
- Atmospheric frequency-dependent and short time-dependent corruptions are calibrated a priori
- Calibrators are observed to determine electronic and bandpass gains

Calibration results are collected in the weblog attached to each dataset