ALMA imaging basics - 2nd Day

Overview

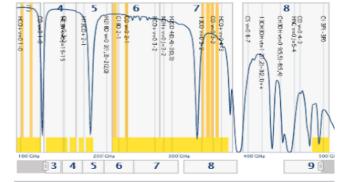
- Basic interferometric concepts
- Basics imaging parameter selection
- Manual Imaging
- Pipeline Imaging
- Brief mention on image analysis
- Brief mention of Self-calibration

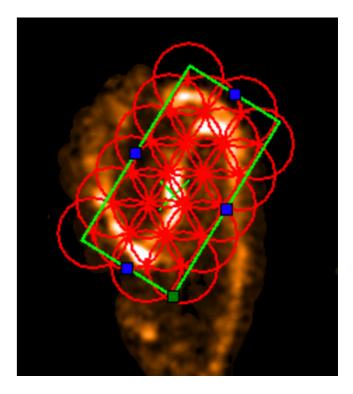
What we hope to achieve here

- You have some grasp on concepts of interferometer synthesis imaging
- You will understand how to image data you got from the ASA
 - Manually
 - Using quick Pipeline commands
- You can begin some basic analysis
 - You can *also* use the ALMA products directly
- You have an understanding of the caveats and some important points when considering to combine non-homogeneous data

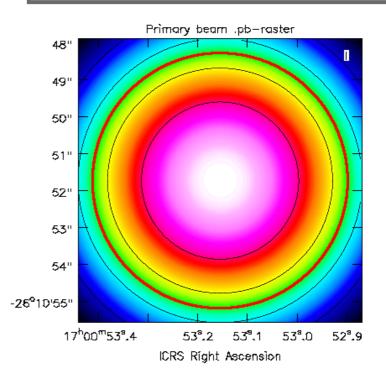
EUROPEAN ARC ALMA Regional Centre What this is not: A detailed synthesis imaging guide/overview A detailed inspection of all CASA tclean parameters

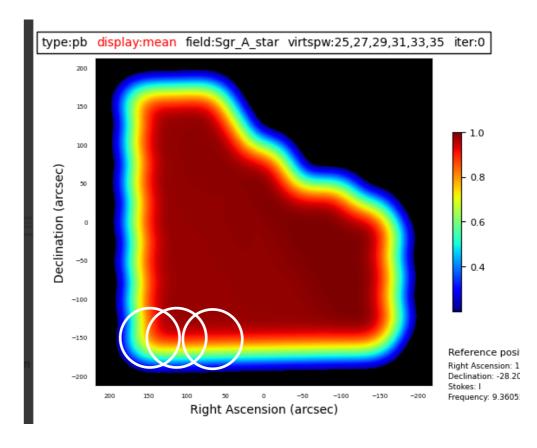
- Band
- Spectral Resolution
- Field of View
- Primary Beam Correction
- Angular Resolution
- Maximum recoverable scale
- Sensitivity to spatial scales U,V coverage
- Array type
- Image units
- Merging data


EUROPEAN ARC ALMA Regional Centre


- Band & Spectral Resolution
 - Frequency of interest for continuum or lines
 - Science you want might need multiple images from various datasets, spectral resolution is better (smaller) for same channel width at a higher frequency
 - Non-homogenous projects need to consider other parameters, e.g. re-binning of channels (lose information)
- Field of View (FOV)
 - Coverage of the observation
 - A single pointing has a primary beam (HPBW) of ~1.13 λ /d, where λ is wavelength and d is the antenna diameter, such that sensitivity to a signal is at the 50% response.
 - Angular size between nulls in the single dish response is ~2.44 λ/d
 - Mosaics built up of multiple pointings and cover a large area

EUROPEAN ARC

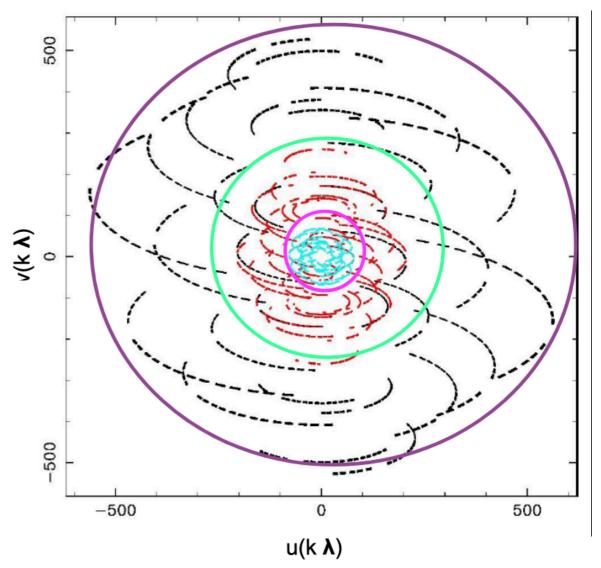

ALMA Regional Centre



- Primary Beam Correction
 - ALMA images are primary beam corrected intrinsically nosier at the edges of the field of view
 - All archive products are PB corrected
 - Mosaics are Nyquist sampled "uniform" noise over the well sampled area and noisier at the edges of the map
 - If measuring map noise use uncorrected PB image, or stay within the HPBW

Contours - 20,40,50,60,80%

EUROPEAN ARC ALMA Regional Centre


- Angular Resolution (AR)
 - Will usually be $\sim \lambda/D$, where λ is wavelength and D is the **maximal baseline length**
 - Calibration must be good otherwise depending on conditions, longer baselines (of any array) could suffer from decoherence (worse phase noise) and have a reduced signal
 - the signal from the smallest scales is not actually reliable
- Maximum recoverable scale (MRS)
 - Sensitivity to large scale structure, interferometers are otherwise insensitive (do not "see") larger scales as they do not sample them (based on configuration)
 - MRS ~ 0.6 $\lambda/D_{min},$ where D_{min} is the shortest baseline in the array
 - Caution using the 'single' shortest baseline take a representative value
 - Flux will be missing from large scale extended sources that are poorly sampled even if you have some short baselines and can cause imaging problems - *ripples and striping*

ALMA Regional Centre

- Sensitivity to spatial scales U,V coverage
 - What do you want to image or need for the science
 - Ties directly with AR and MRS caution for using different data and about merging
 - Length of time snapshot or longer better U,V coverage, better representation of the true sky
 - Imaging parameters ideal for one array/ observation might not be the same as for a different one

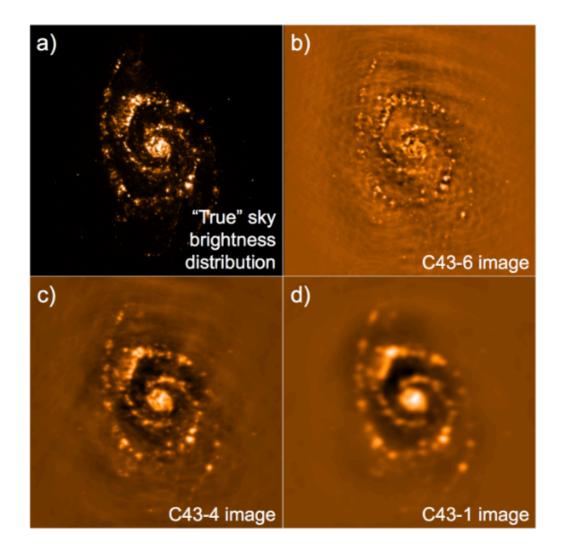
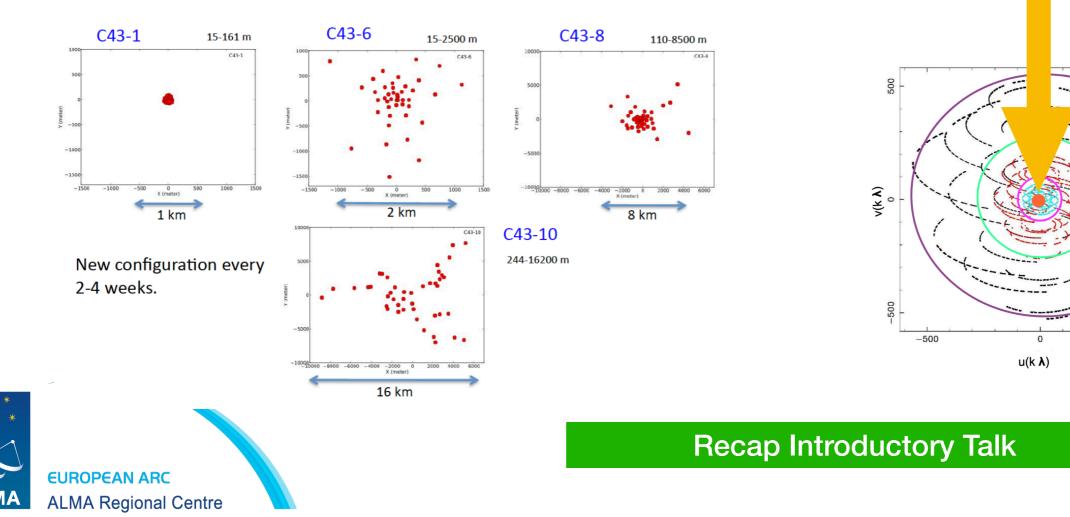
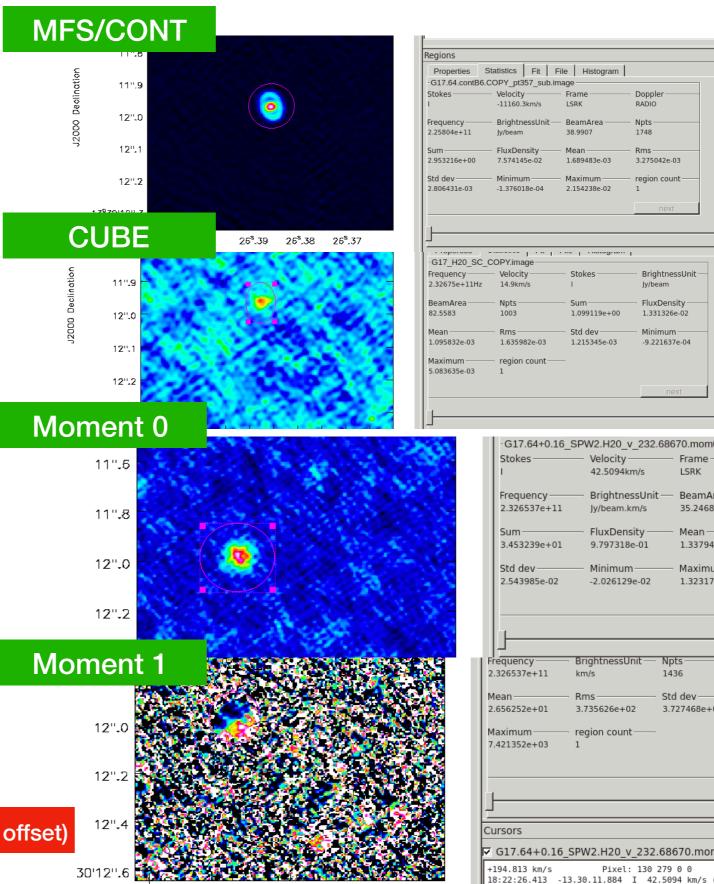



Figure 3.6: Examples of spatial filtering using the CASA task simobserve on notional ALMA configurations for Cycle 9. Panel a (upper left): An optical image of the galaxy M51 used as a template for a true sky brightness distribution for the simulations. The frequency of the emission has been changed to 100 GHz, the image size has been scaled to $\sim 3' \times 3'$, and its declination has been changed to -40° to allow ALMA observations to be simulated. For the simulations, the galaxy was "observed" over a mosaic of 33 pointings, for ~ 10 hours in total. The resulting dirty images were CLEANed. Panel b (upper right): The high-resolution image of the galaxy obtained when observed in the ALMA C43-6 notional configuration with maximum baseline of 2516.9 m, respectively. The resulting synthesized beam is $\sim 0.47''$ and the maximum recoverable scale is $\sim 4''$. Panel c (lower left): Medium-resolution image of the galaxy when observed in the ALMA C43-6 notional configuration with maximum baseline of 783.5 m, respectively. The resulting synthesized beam is $\sim 1.3''$ and the maximum recoverable scale is $\sim 11''$. Panel d (lower right): Low-resolution image of the galaxy when observed in ALMA notional configuration C43-1 with maximum baselines of 160.7 m, respectively. The resulting synthesized beam is $\sim 28''$.

EUROPEAN ARC ALMA Regional Centre

- Array type
 - Is the archive data selected suitable, i.e. intended for merging or not i.e. C43-1 will not match with C43-10 missing mid-length-baselines
 - Arrays should overlap in baseline lengths continuous in U,V
 - ACA and Total-Power for short spacing -> large spatial scales
 - Caution with weights, and blending of TP (SDint / Feather techniques)

500


- Imaging units (recap)
 - Continuum images:
 - 'mfs' or 'cont' are a single plane
 - Units are Jy/beam
 - Flux Density is Jy
 - Caution with models Jy / pixel
 - If you input images into the CASA task simobserve make sure they are in Jy/pixel
 - Cube images:
 - Units are Jy/Beam per CHANNEL
 - Channel unit km/s or mHz (kHz)
 - Moment Zero:
 - Units are Jy/Beam.Km/s
 - Integrated over velocity
 - Moment One:

ALMA

Units are km/s

ALMA Regional Centre

Axes - J2000(FK5) != ICRS (10s milli-arcsecond offset)

-9.221637e-04

Frame

BeamA

35.2468

Mean

1.337946

Maximu

1.323178

1436

Std de

3.727468e+0

LSRK

- Merging data
 - Required for the science?
 - Aforementioned array combinations are they suitable ?
 - Same **Band**, same **spectral coverage** and **resolution**?
 - Same field of view?
 - Similar sensitivities?
 - Usually limited by longer baselines brightness sensitivity in terms of temperature (K) is worse for high angular resolutions (beam dependent) vs. point source sensitivity (Jy/beam)
 - Older data (Cycle 0,1,2) has data weighting issues between 12m and ACA needs manual adjustments https://casaguides.nrao.edu/index.php/DataWeightsAndCombination
 - Coordinate units J2000 (FK5) to ICRS

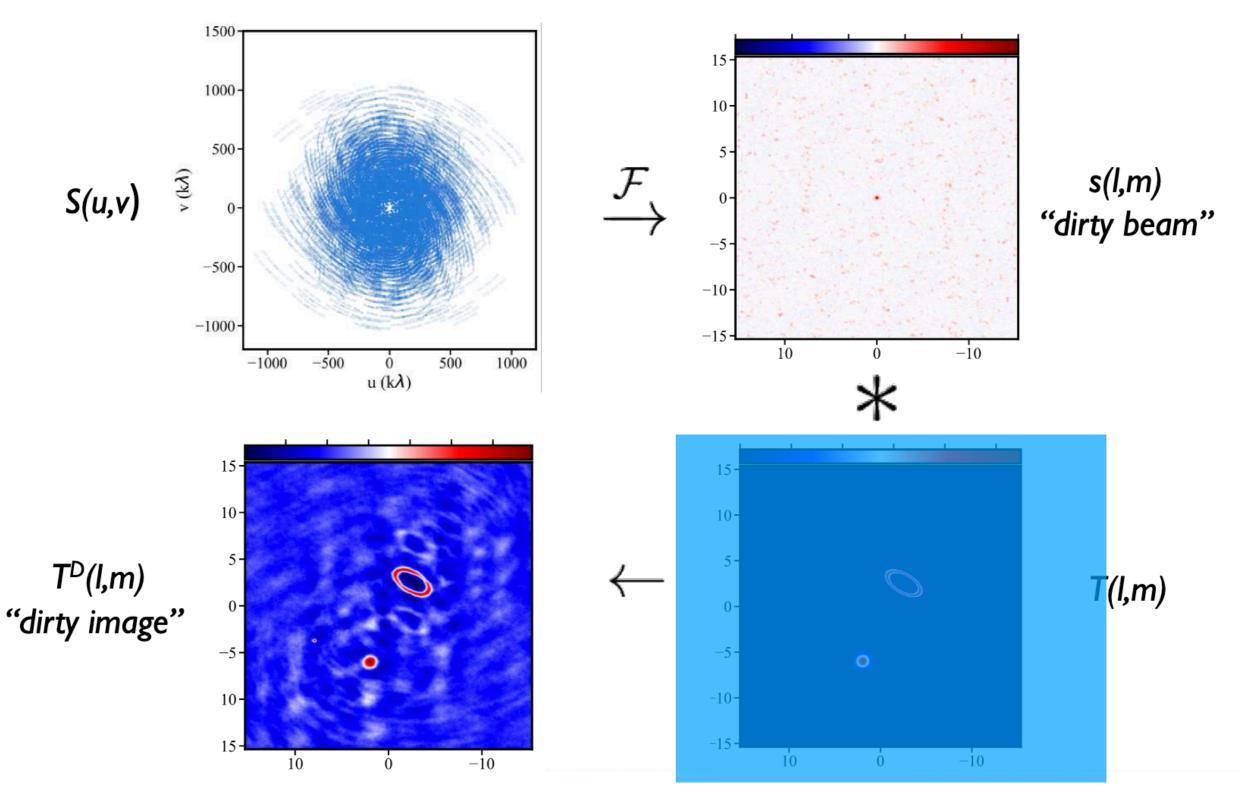
Specific data merging tutorials: https://casaguides.nrao.edu/index.php?title=M100_Band3 Also data combination group work: https://ui.adsabs.harvard.edu/abs/2021AAS...23735307K/abstract

EUROPEAN ARC ALMA Regional Centre

Questions so far?

Basics of imaging synthesis

https://casaguides.nrao.edu/index.php/First_Look_at_Imaging


- Interferometers sample the sky in the Fourier Domain (the 'Visibilities') which are complex quantities (amplitude and phase) -> think "flux and position"
- Imaging is an inverse Fourier transform
 - We have sampled particular U, V coordinates with given baselines at given times.
 These must be 'converted' into physical parameter space onto an *I, m* grid
 - Mathematical transforms change U,V into image plane
 - V(U,V) = 20 FT { $B_{primary}$. I_{source} } (Visibilities)
 - S(U,V) = 1 where U,V are sampled, = 0 if not (Sampling function)
 - $B_{dirty}(I,m) = 20 FT^{-1} \{\$\}$ (Dirty Beam)
 - I_{meas} (I,m) = 2D FT⁻¹ {S.V} (Measured image)
 - -> Imeas = Bdirty * {Bprimary.Isource}
 - So we doing a Fourier Transform, then must deconvolve to 'remove' the dirty beam

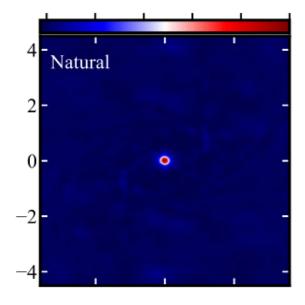
Credits- J.Pety IRAM

EUROPEAN ARC ALMA Regional Centre Recommended (i) : <u>https://science.nrao.edu/science/meetings/2018/16th-synthesis-imaging-workshop/talks/Wilner_Imaging.pdf</u>

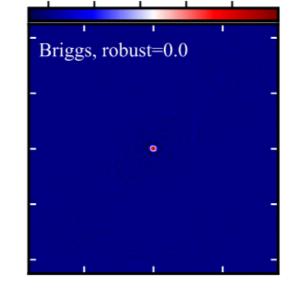
Basics of imaging synthesis

Basics of imaging synthesis component Note - needs good U,V coverage and continuity important for merging data poorly merged arrays do not conform to a 'gaussian' clean beam 1500-15 1000- $10 \cdot$ 500-5 \mathcal{F}_{n} s(l,m) "dirty beam" v (kA) S(u,v) 0 0. -5 -500--10--1000--15 -1010 -1000 -500 500 1000 0 u (k λ) 15-15-10-10-5-5-T^D(l,m) "dirty image" T(l,m) 0-0--5--5 • -10-10-15--15--1010 Ò -1010 Now Deconvolve

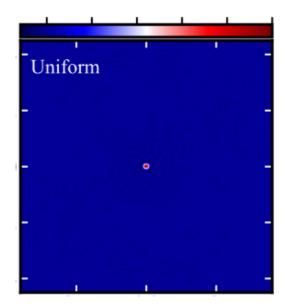
Credits: Wilner - SMA

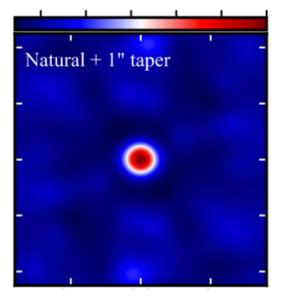

'Clean beam' - fit of central 'gaussian'

- When imaging a number of parameters need to be used:
 - Cell (pixel) size: clean beam / 5 i.e. at least 5 cells (pixels) per clean beam (you know AR)
 - · Required to grid correctly, ascribe flux to 'correct' locations within a 'clean beam'
 - Pixels too large blocky image flux build up in 'wrong' places, poor clean beam 'fit'
 - Pixels too small hard for the Fourier transform, cells 'empty', could affect weightings
 - Image Size: Cover the Primary Beam
 - If emission is not large scale, image to HPBW or smaller (long baselines which can be huge images), for mosaics always extend past the edges
 - Specmode: 'mfs' (multi-frequency synthesis) or 'cube' spectral line cube
 - ALMA/CASA Pipeline specific 'cont' merges all SPWs
 - Cleaning type: CLEANing Hogbom, Clark, Multi-Scale; (but also Max Entropy MEM)
 - niter / threshold how much to clean by before stopping



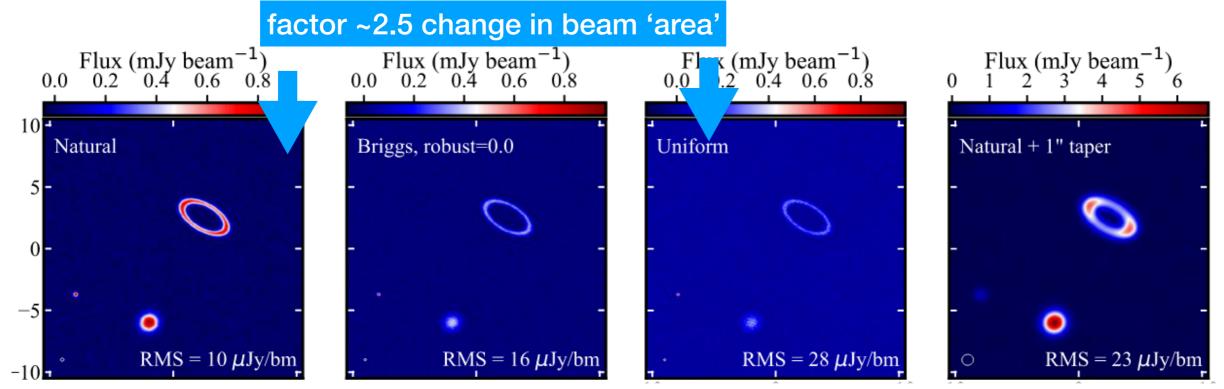
- When imaging a number of parameters need to be used:
 - **Robust**: Numerical Value from +2 *Natural* to -2 *Uniform (between is 'Briggs Robust')*
 - +ve, weights towards shorter baselines (each baselines is equally weighted and more shorter ones are always sampled lower AR, but maximised sensitivity)
 - -ve, weights towards longer baselines (gives more power to least sampled visibilities inversely proportioned, increasing noise but best AR)
 - Default = 0.5, 'middle-ground' between resolution and sensitivity
 - Taper: Make the beam larger (worse AR) by Apodizing the U,V by a Gaussian
 - Like smoothing the image with a Gaussian but not 'exactly' the same
 - uvrange: optional method to limit the range of visibilities in the image, e.g. if a few shorter baseline are causing a striping, you can exclude them from the time (uvrange = '800~16000' - default meters, or specify klambda - obeys list rule for multiple MS)




natural

robust=0

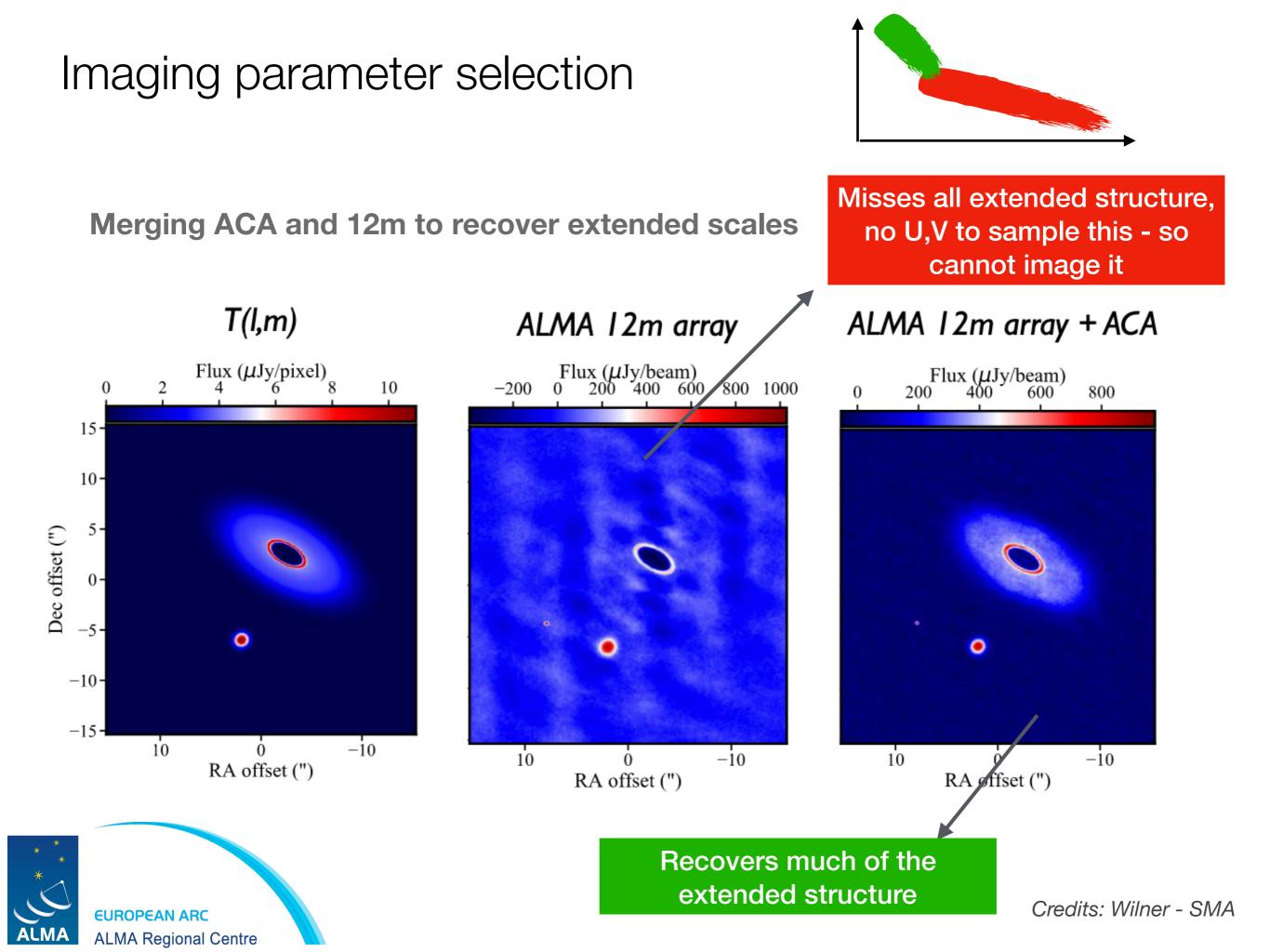
uniform



natural + 1" taper

	Robust/Uniform	Natural	Taper	
resolution	higher	medium	lower	
sidelobes	lower	higher	depends	
point source sensitivity	lower	maximum	lower	
extended source sensitivity	lower	medium	higher	

natural rot 0.29x0.25 p.a. -81 0.19x0.


robust=0 0.19x0.17 p.a. -78

uniform 0.17x0.15 p.a. -87

natural + 1" taper 0.93x0.88 p.a. -86

	Robust/Uniform	Natural	Taper
resolution	higher	medium	lower
sidelobes	lower	higher	depends
point source sensitivity	lower	maximum	lower
extended source sensitivity	lower	medium	higher

- Brief aside: Image parameters are permitted to vary to reach a PI's main goal (ACA 7m QA is not beam assessed fixed array)
 - Manual calibration values chosen by an analyst
 - Pipeline calculated by heuristics
 - Mainly robust is adjusted to meet the beam, within 0.0 to 2.0. Negative are not use as large scales are notably down-weighted
 - Pipeline mitigation for 'large' images
 - 3x cell per beam, smaller map (0.5 PB)

Goals From OT:

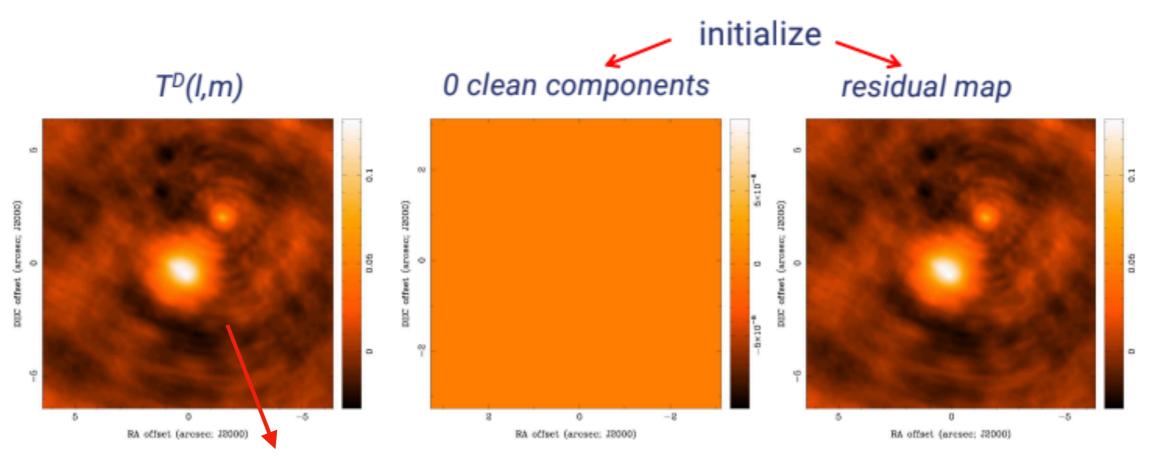
Representative Target: LkCa15 Representative Frequency: 663.9863 GHz (SPW 37) Bandwidth for Sensitivity: 1.5e+04 MHz Min / Max Acceptable Resolution: 0.146 arcsec / 0.179 arcsec Maximum expected beam axial ratio (from OT): Not available Goal PI sensitivity: Not available Single Continuum: False

Estimated Synthesized Beam and Sensitivities for the Representative Target/Frequency

Estimates are given for four possible values of the tclean robust weighting parameter: robust = 0.0, +0.5 (default), +1.0, and +2.0. If the "Min / Max Acceptable Resolution" is available (>=Cycle 5 12-m Array data), the robust value closest to the default (+0.5) that predicts a beam area (defined as simply major x minor) that is in the range of the PI requested beam areas according to the table robust value closest to the default (+0.5) that predicts a beam area (defined as simply major x minor) that is in the range of the PI requested beam areas according to the table robust value closest to the default (+0.5) that predicts a beam area (defined as simply major x minor) that is in the range of the PI requested beam areas according to the table robust values predict a beam area (at is in range, robust=+2.0 is chosen if the predicted beam area is too large. The chosen robust value is highlighted in green and used for all science target imaging. In addition to an estimate for the regBW, an estimate for the aggregate continuum bandwidth. No line contamination but accounting for spw frequency overlap. If the Bandwidth for the spw containing the representative frequency (repSPW), then the beam is predicted for the repSPW alone. A message appears on the "By Task" view if a non-default value of robust (i.e., not +0.5) is chosen. Additionally, within the PI requested range using one of the four robust values, Warning messages appear on this page.

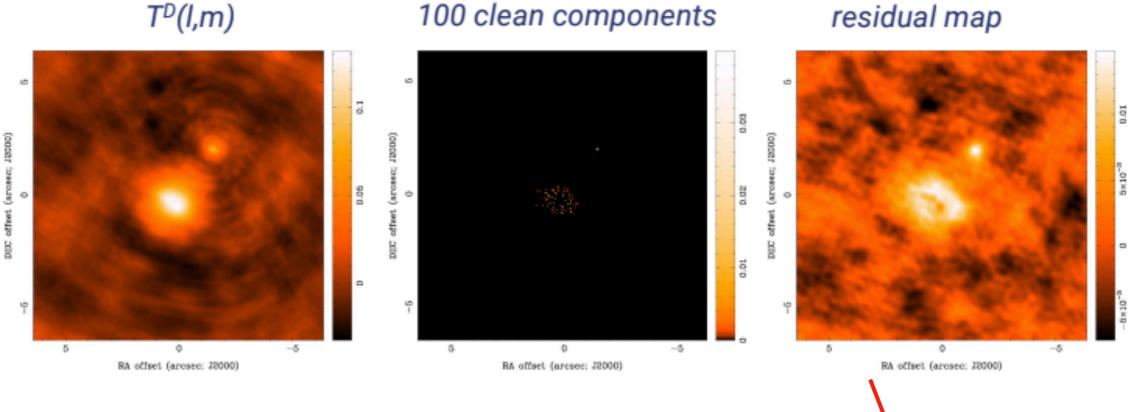
These estimates should always be considered as the BEST CASE SCENARIO. These estimates account for Tsys, the observed uv-coverage, and prior flagging; (2) loss of continuum bandwidth due to the hif_findcont process (i.e. removal of lines and other spectral features from the data used to image the continuum); quality like (a) poor match of uv-coverage to image complexity; (b) dynamic range effects; (c) calibration deficiencies (poor phase transfer, residual antenna position errors, etc.). It is also important to note that both the repBW and aggBW beam calculations are intrinsically multi-frequency synthesis continuum calculations, using the relevant spws as described above. single channel in a cube will typically be larger and can be significantly larger depending on the details of uv-coverage and channel width.

robust	uvtaper	Synthesized Beam	Cell	Beam Ratio	Bandwidth	BW Mode	Effective Sensitivity
0.0	0	0.176 x 0.154 arcsec @ -15.0 deg	0.031 x 0.031 arcsec	1.14	8169 MHz	repBW	0.000373 Jy/beam
0.0	0	0.176 x 0.154 arcsec @ -15.0 deg	0.031 x 0.031 arcsec	1.14	8169 MHz	aggBW	0.000373 Jy/beam
0.5	0	0.204 x 0.175 arcsec @ -20.2 deg	0.035 x 0.035 arcsec	1.17	8169 MHz	repBW	0.000298 Jy/beam
0.5	0	0.204 x 0.175 arcsec @ -20.2 deg	0.035 x 0.035 arcsec	1.17	8169 MHz	aggBW	0.000298 Jy/beam
1.0	0	0.245 x 0.206 arcsec @ -22.6 deg	0.041 x 0.041 arcsec	1.19	8169 MHz	repBW	0.00027 Jy/beam
1.0	0	0.245 x 0.206 arcsec @ -22.6 deg	0.041 x 0.041 arcsec	1.19	8169 MHz	aggBW	0.00027 Jy/beam
2.0	0	0.266 x 0.222 arcsec @ -23.5 deg	0.044 x 0.044 arcsec	1.20	8169 MHz	repBW	0.000268 Jy/beam
2.0	0	0.266 x 0.222 arcsec @ -23.5 deg	0.044 x 0.044 arcsec	1.20	8169 MHz	aggBW	0.000268 Jy/beam

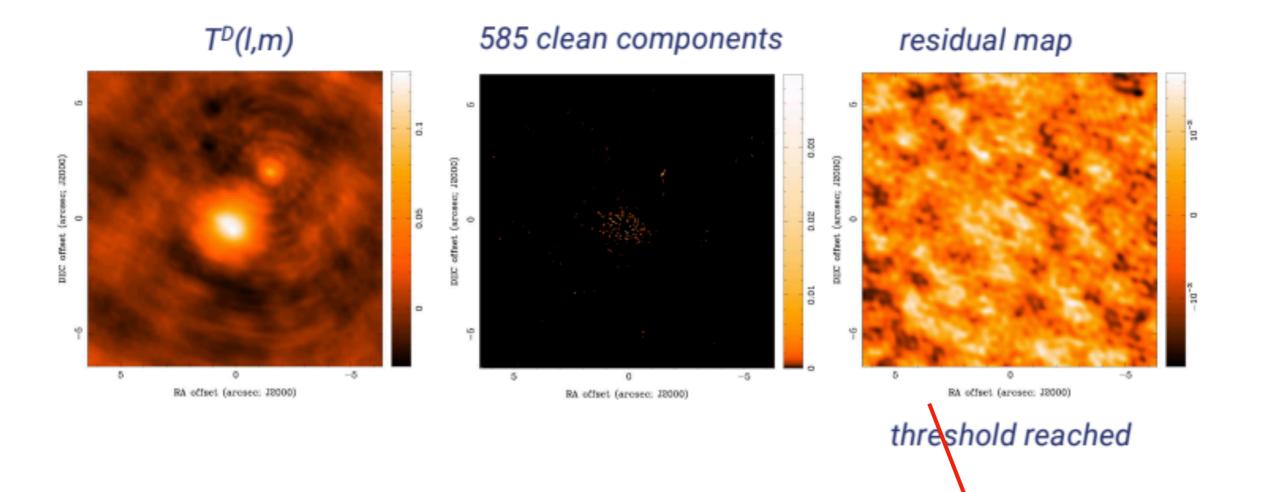


- Colloquial overview
 - · Takes components out of the 'dirty image' and saves to a clean model
 - Can have major/minor cycles, visibility plane/ image plane 'cleaning' step wise deconvolving
 - Stops at a stopping criteria (niter or threshold)
 - Should use 'masked' regions to avoid selection of artefacts or negatives
 - Clean model is convolved with clean beam —> "representative" image
- Different algorithms behind the scenes:
 - · Hogbom default
 - Clark
 - Multi-scale

CASA docs.: https://casa.nrao.edu/casadocs/casa-6.1.0/imaging/synthesis-imaging/deconvolution-algorithms

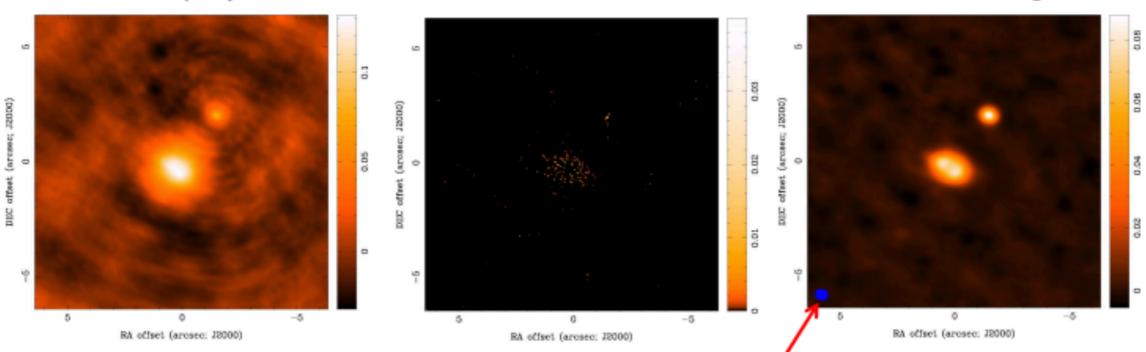

EUROPEAN ARC ALMA Regional Centre

Usually apply a mask


 $T^{D}(l,m)$

100 clean components

Could 'interactively' refine the mask


EUROPEAN ARC ALMA ALMA Regional Centre

Should look like noise - then we are done

 $T^{D}(l,m)$

585 clean components

ellipse = restoring beam fwhm

'clean' beam

restored image

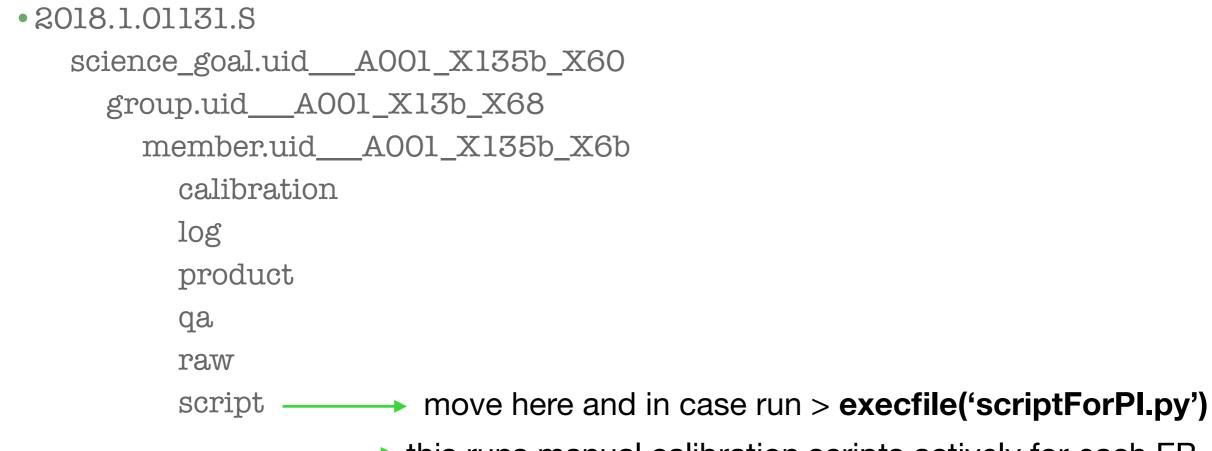
Some Schools and Material (not exhaustive)

- IRAM summer school: https://www.iram-institute.org/EN/content-page-399-7-67-367-399-0.html
- European Radio interferometry school ERIS: https://www.jive.eu/eris2022/
- SMA interferometry school: https://lweb.cfa.harvard.edu/sma-school/program/
- NRAO synthesis imaging workshop: <u>https://science.nrao.edu/science/meetings/</u>
 <u>2018/16th-synthesis-imaging-workshop/16th-synthesis-imaging-workshop-lectures</u>
- Myers Imaging in CASA: <u>https://slideplayer.com/slide/7964345/</u>
- UK ARC node line imaging tutorial: <u>https://www.alma.ac.uk/index.php/meeting-supplemental-material/286-spectral-line-imaging-tutorial</u>
- ALMA primer series basic concepts videos: <u>https://www.youtube.com/channel/</u> <u>UCwTfillYuUQr4sRc5iSJaRg/videos</u>
- Lecture course: <u>https://www.astron.nl/astrowiki/doku.php?</u> <u>id=uva_msc_radioastronomy_2013</u>

Questions so far?

Preparing for imaging

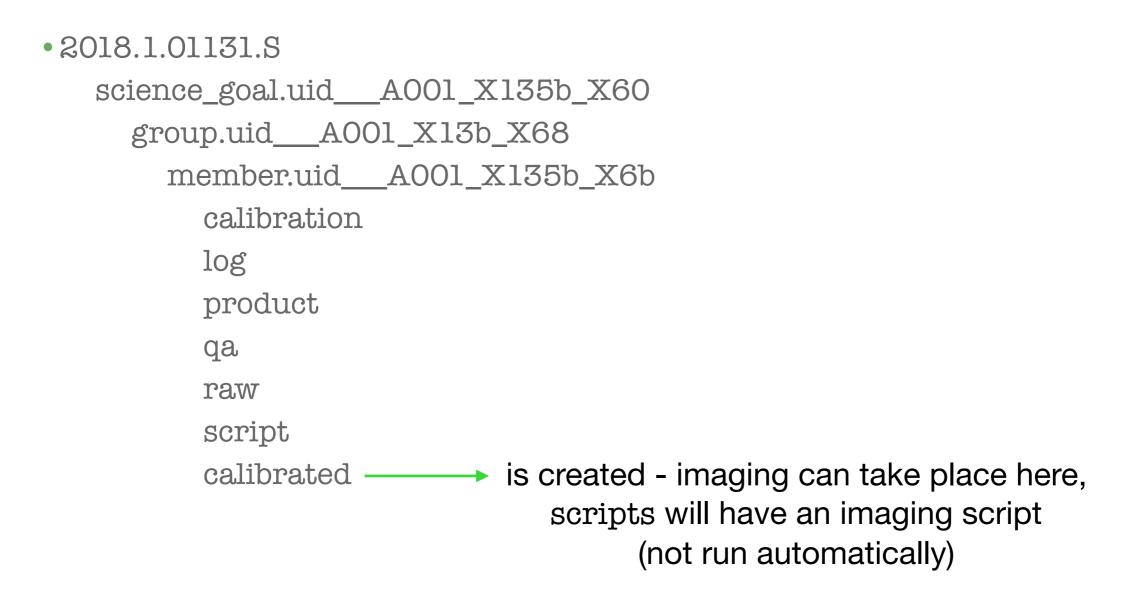
- Downloaded products can be from **manual** or **pipeline** imaging
- It is important to note:
 - There is no reason to assume better/worse quality based on method
 - Manual images (in earlier cycles) are more specific to make a quality assessment based on the science goal - *i.e. lower level of completeness* - only **mfs** per SPW, <u>some</u> cubes focussed on line emission only (not full SPW) -> hence ARI-L
 - Pipeline is systematically making mfs per SPW, combined cont, full SPW cubes
 - If mitigation occurs products then become limited less sources, smaller images, 'missing' cubes
 - Can do 'science' but images not assessed for scientific 'correctness'
- REMEMBER you do not download calibrated data, you need to remake it before imaging
 - or use the calMS service ARCs run the calibration and deliver a calibrated dataset as a queue based system
 - Cycle 8+ scriptForPI.py also runs some preparation for starting imaging for PL data


ALMA Regional Centre

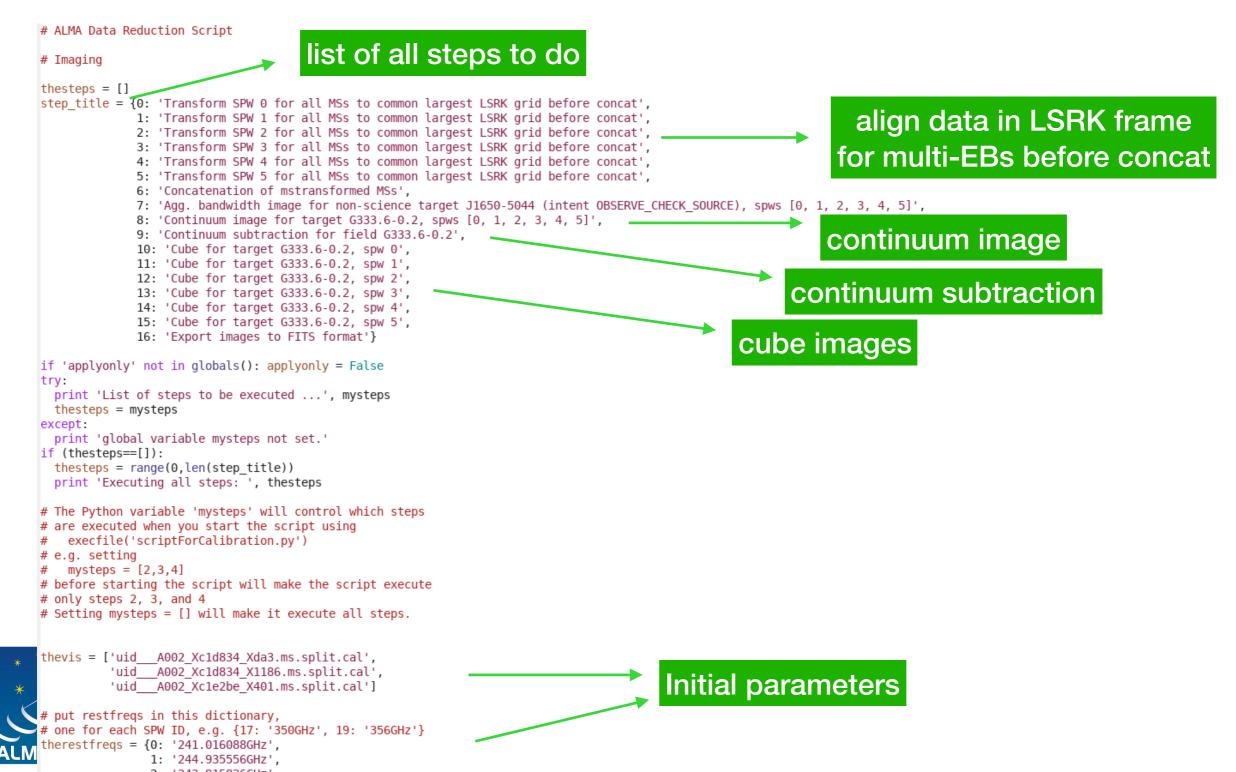
https://almascience.eso.org/tools/eu-arc-network/the-european-arc-calms-service

- Recall "ALMA science Archive Content" talk
- After unpacking the download, e.g.:
 - 2018.1.01131.S science_goal.uid___A001_X135b_X60 group.uid___A001_X13b_X68 member.uid___A001_X135b_X6b calibration log product qa raw script

- Recall "ALMA science Archive Content" talk
- After unpacking the download, e.g.:

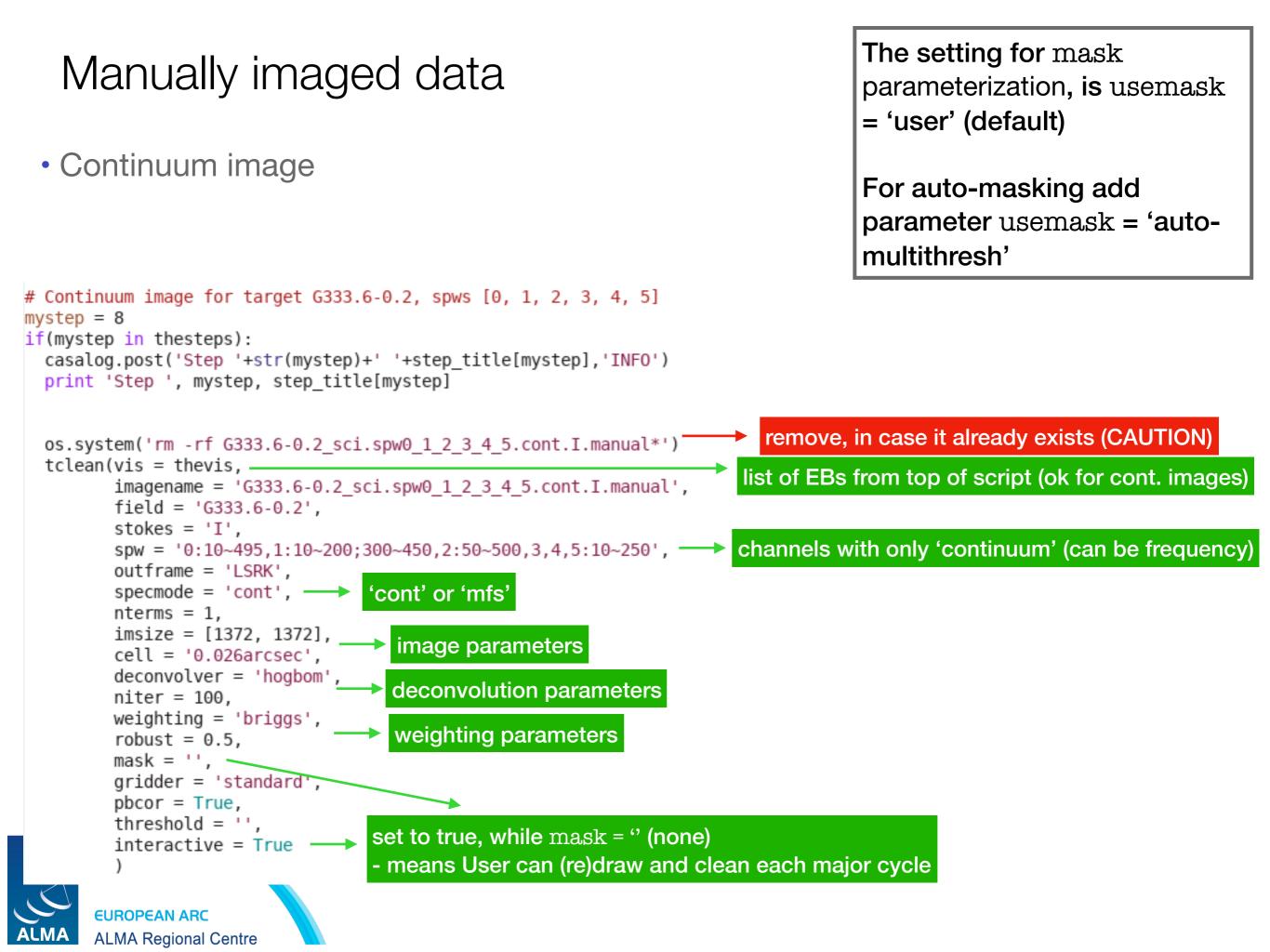


this runs manual calibration scripts actively for each EB

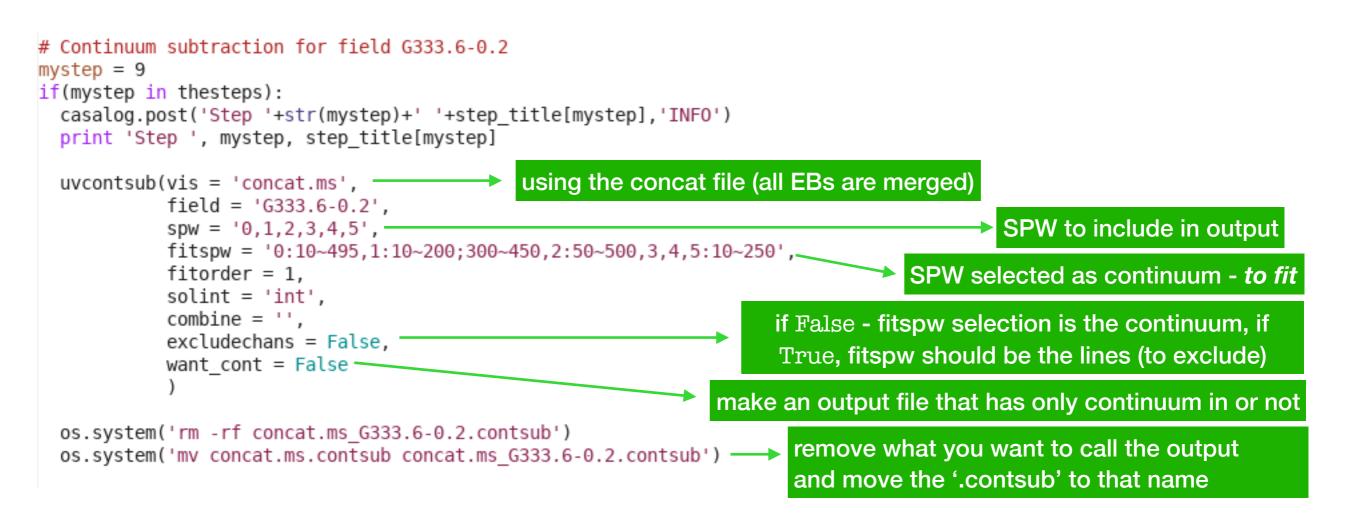

Manually imaged data can have been either manually or pipeline calibrated, later imaging can be made regardless to the calibration method

- Recall "ALMA science Archive Content" talk
- After unpacking the download, e.g.:

- Usually older cycles, or difficult for Pipeline to image
- EU delivered data will usually have a step-wise imaging script:

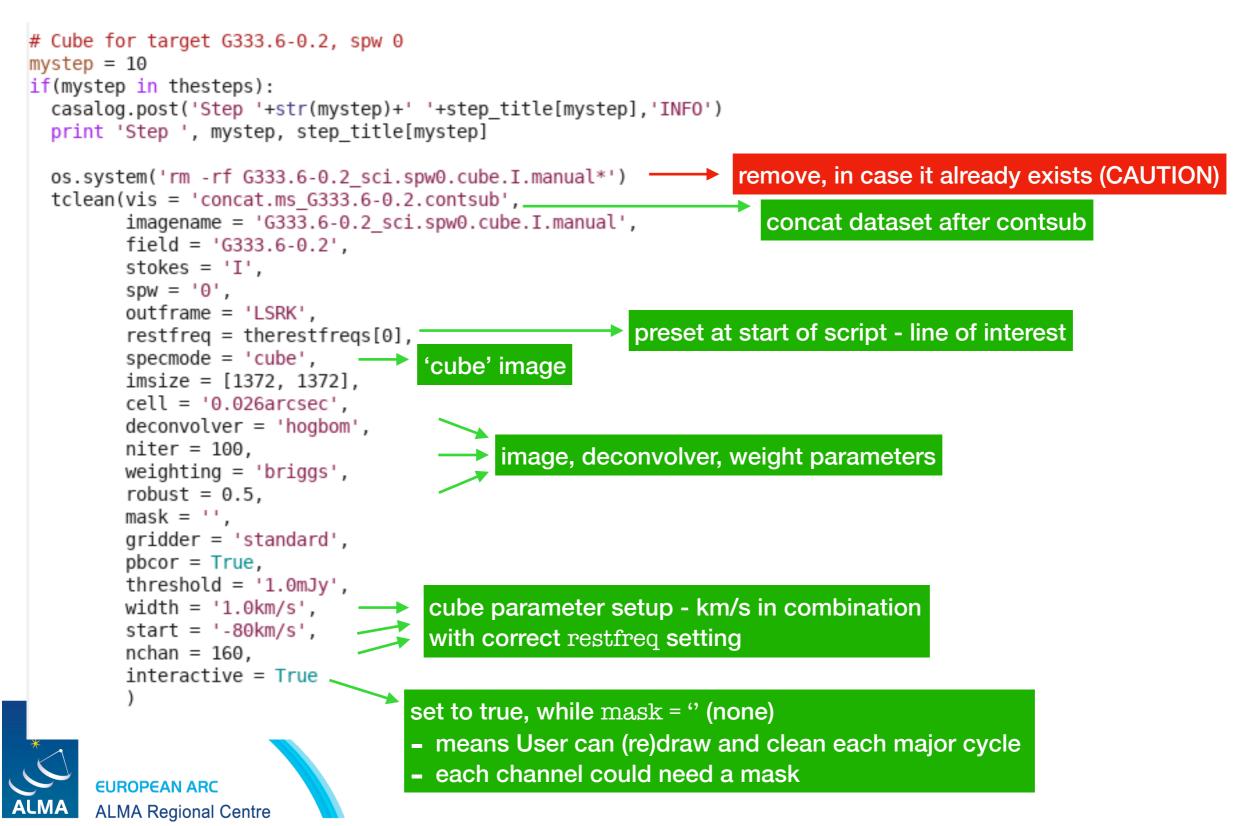

- Usually older cycles, or difficult for Pipeline to image
- EU delivered data will usually have a step-wise imaging script:

```
# put restfreqs in this dictionary,
# one for each SPW ID, e.g. {17: '350GHz', 19: '356GHz'}
therestfreqs = {0: '241.016088GHz',
               1: '244.935556GHz',
               2: '243.915826GHz',
               3: '257.35GHz',
               4: '256.302035GHz',
               5: '260.35GHz'}
thevislsrk = ['uid A002 Xc1d834 Xda3.ms.split.cal.lsrk.spw0',
              'uid A002 Xc1d834 Xda3.ms.split.cal.lsrk.spw1',
              'uid A002 Xc1d834 Xda3.ms.split.cal.lsrk.spw2',
              'uid A002 Xc1d834 Xda3.ms.split.cal.lsrk.spw3',
              'uid___A002_Xc1d834_Xda3.ms.split.cal.lsrk.spw4',
              'uid___A002_Xc1d834_Xda3.ms.split.cal.lsrk.spw5',
              'uid___A002_Xc1d834_X1186.ms.split.cal.lsrk.spw0',
              'uid A002 Xc1d834 X1186.ms.split.cal.lsrk.spw1',
              'uid___A002_Xc1d834_X1186.ms.split.cal.lsrk.spw2',
              'uid___A002_Xc1d834_X1186.ms.split.cal.lsrk.spw3',
              'uid _A002_Xc1d834_X1186.ms.split.cal.lsrk.spw4',
              'uid A002 Xc1d834 X1186.ms.split.cal.lsrk.spw5',
              'uid___A002_Xc1e2be_X401.ms.split.cal.lsrk.spw0',
              'uid___A002_Xc1e2be_X401.ms.split.cal.lsrk.spw1',
              'uid___A002_Xc1e2be_X401.ms.split.cal.lsrk.spw2',
              'uid A002 Xc1e2be X401.ms.split.cal.lsrk.spw3',
              'uid___A002_Xc1e2be_X401.ms.split.cal.lsrk.spw4',
              'uid A002 Xc1e2be X401.ms.split.cal.lsrk.spw5']
# Transform SPW 0 for all MSs to common largest LSRK grid before concat
mystep = 0
if(mystep in thesteps):
  casalog.post('Step '+str(mystep)+' '+step_title[mystep],'INFO')
  print 'Step ', mystep, step_title[mystep]
  for myvis in thevis:
   os.system('rm -rf '+myvis+'.lsrk.spw0')
   mstransform(vis = myvis,
               outputvis = myvis+'.lsrk.spw0',
               outframe = 'LSRK',
                spw = '0',
                mode = 'frequency',
               nchan = 3837,
                width = '122.082kHz',
                start = '240.827180449GHz',
                regridms = True,
               datacolumn = 'data',
                reindex = True
          ALMA Regional Centre
```


Important: telean can handle input of multiple EBs and ensures the EBs velocities are correctly aligned. For the continuum step this is fine and the User can also simply select the SPW and CHANNELS required to image:

e.g. spw='0:10~495,1:10~200;300~450,2:50~.....'

However, prior to continuum subtraction and line imaging it is easier to concatenate the EBs and just have one. In this case rather than 'forcing' together the EBs - where the channels might be very slightly shifted due to TOPO observing frame to LSRK transition, it is useful to convert all EBs to LSRK then combine. This way ever SPW and CHANNEL are aligned per EB, and you only ever have to track the original SPW numbering.



Continuum subtraction

• Line Cube imaging

Line Cube imaging

```
# Cube for target G333.6-0.2, spw 0
mystep = 10
if(mystep in thesteps):
  casalog.post('Step '+str(mystep)+' '+step title[mystep],'INFO')
  print 'Step ', mystep, step title[mystep]
  os.system('rm -rf G333.6-0.2_sci.spw0.cube.I.manual*')
  tclean(vis = 'concat.ms G333.6-0.2.contsub',
         imagename = 'G333.6-0.2 sci.spw0.cube.I.manual',
        field = 'G333.6-0.2',
         stokes = 'I',
         spw = '0',
         outframe = 'LSRK',
                                                         can set to whatever you want
         restfreq = therestfreqs[0],
         specmode = 'cube',
         imsize = [1372, 1372],
         cell = '0.026arcsec',
         deconvolver = 'hogbom',
                                                              User can image a full cube and then
         niter = 100,
                                                              cut out channel ranges later, or just set
        weighting = 'briggs',
         robust = 0.5.
                                                             to image a few 10s of channels per line
         mask = '',
         gridder = 'standard',
                                                              of interest
         pbcor = True,
         threshold = '1.0mJy',
        width = '1.0 \text{km/s'},
                                     km/s or freq can be used
         start = '-80 km/s',
         nchan = 160,
         interactive = True
```

The setting for mask parameterization, is usemask = 'user' (default)

For auto-masking add parameter usemask = 'automultithresh'

EUROPEAN ARC **ALMA Regional Centre**

• The previous full script can be generated with the EU Image Script Generator

https://confluence.alma.cl/pages/viewpage.action?pageId=72165197

• Other possible templates, e.g. NRAO

https://casaguides.nrao.edu/index.php/Guide_to_the_NA_Imaging_Template

• User can copy, paste, edit existing commands

- use in the CASA command line
- pre-set variables for cell or image size etc.
- run clean loops and non-interactive imaging changing e.g. robust values
- can set auto-masking

Automasking parameters

- setting usemask = 'auto-multithresh' activates the automatic masking
- 'unlocks' the extra variables:

usemask	<pre>= 'auto-multithresh'</pre>	<pre># Type of mask(s) for deconvolution: user, pb, or auto-multithresh</pre>
pbmask	= 0.2	# primary beam mask
sidelobethreshold	= 3.0	<pre># sidelobethreshold * the max sidelobe level * peak residual</pre>
noisethreshold	= 5.0	<pre># noisethreshold * rms in residual image + location(median)</pre>
lownoisethreshold	= 1.5	<pre># lownoisethreshold * rms in residual image + location(median)</pre>
negativethreshold	= 0.0	<pre># negativethreshold * rms in residual image + location(median)</pre>
smoothfactor	= 1.0	# smoothing factor in a unit of the beam
minbeamfrac	= 0.3	# minimum beam fraction for pruning
cutthreshold	= 0.01	# threshold to cut the smoothed mask to create a final mask
growiterations	= 75	# number of binary dilation iterations for growing the mask
dogrowprune	= True	# Do pruning on the grow mask
minpercentchange	= -1.0	# minimum percentage change in mask size (per channel plane) to trigger updating of ma
verbose	= False	# True: print more automasking information in the logger

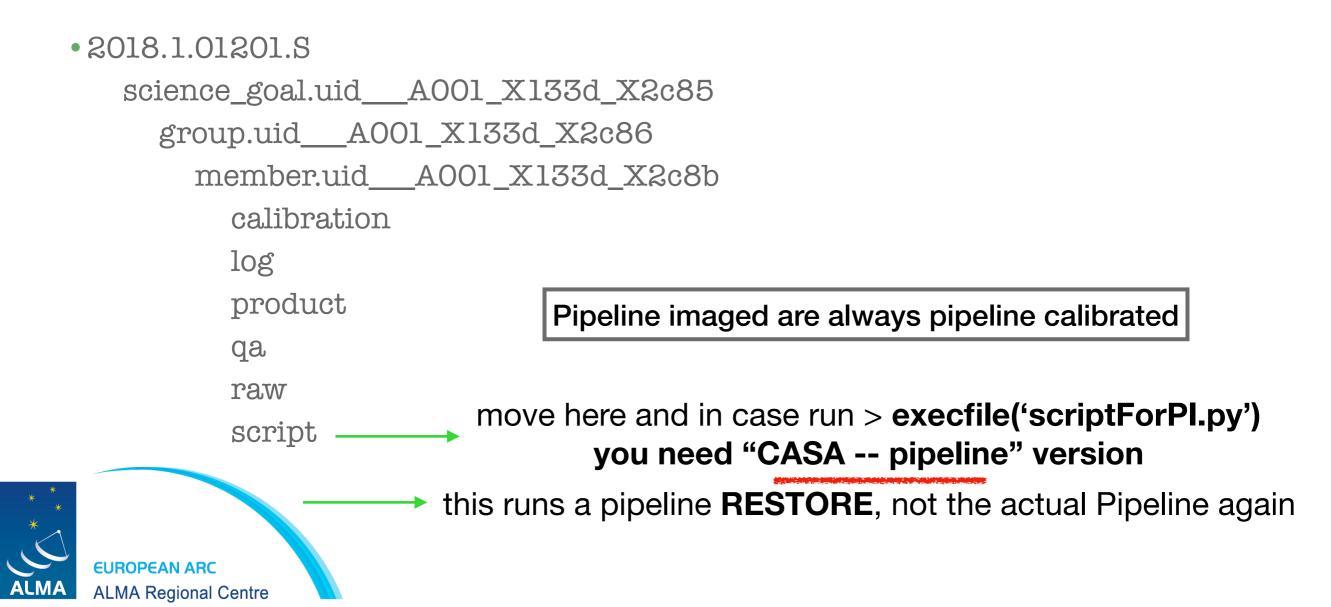
- Generally, the sidelobethreshold, noisethreshold, lownoisethrehsold are those to change (slightly) for different behaviour in the masking
- NOTE: standard parameter of niter and threshold, interactive must be set accordingly to allow auto-masking to work:
 - niter = 99999 (so this doesn't stop clean)
 - threshold = $\sim 2-3x$ sigma (of the map noise away from real/strong signal in a dirty image)
 - interactive = False (or True to steer the masking, and leave threshold unset)

EUROPEAN ARC

ALMA Regional Centre

MUST READ - NRAO guide: https://casaguides.nrao.edu/index.php/Automasking_Guide

Questions so far?

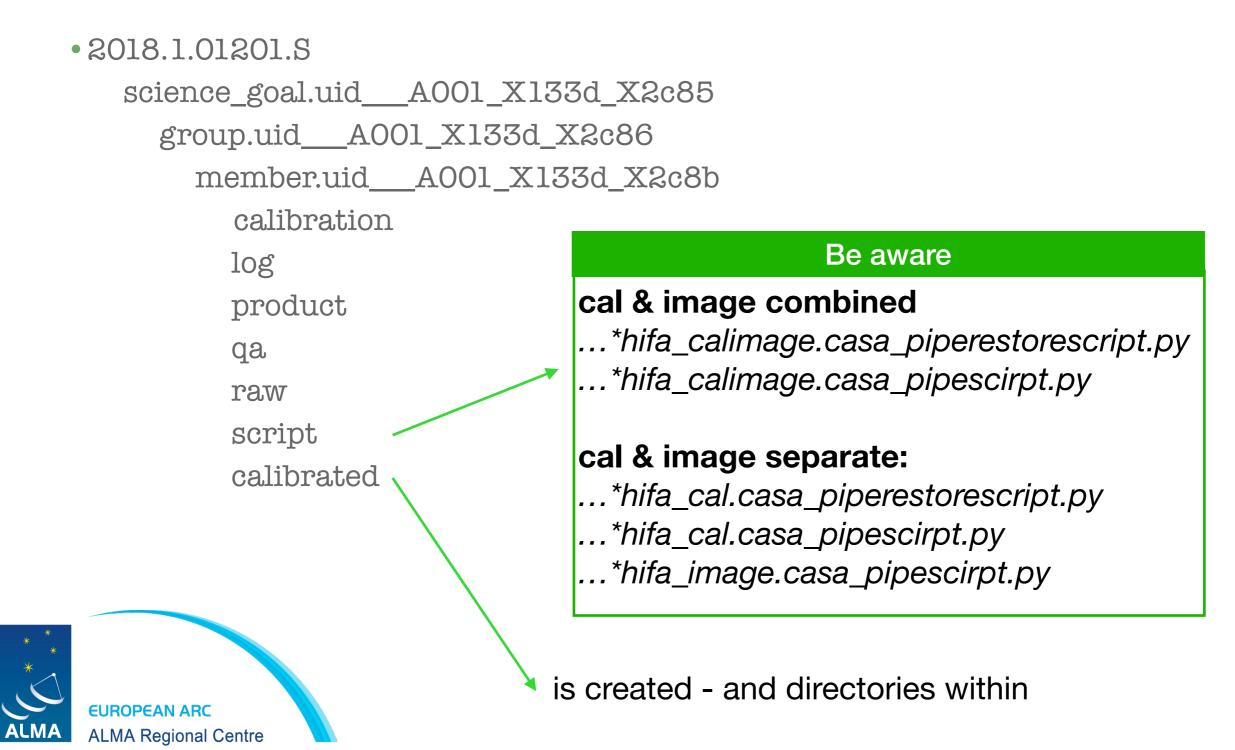


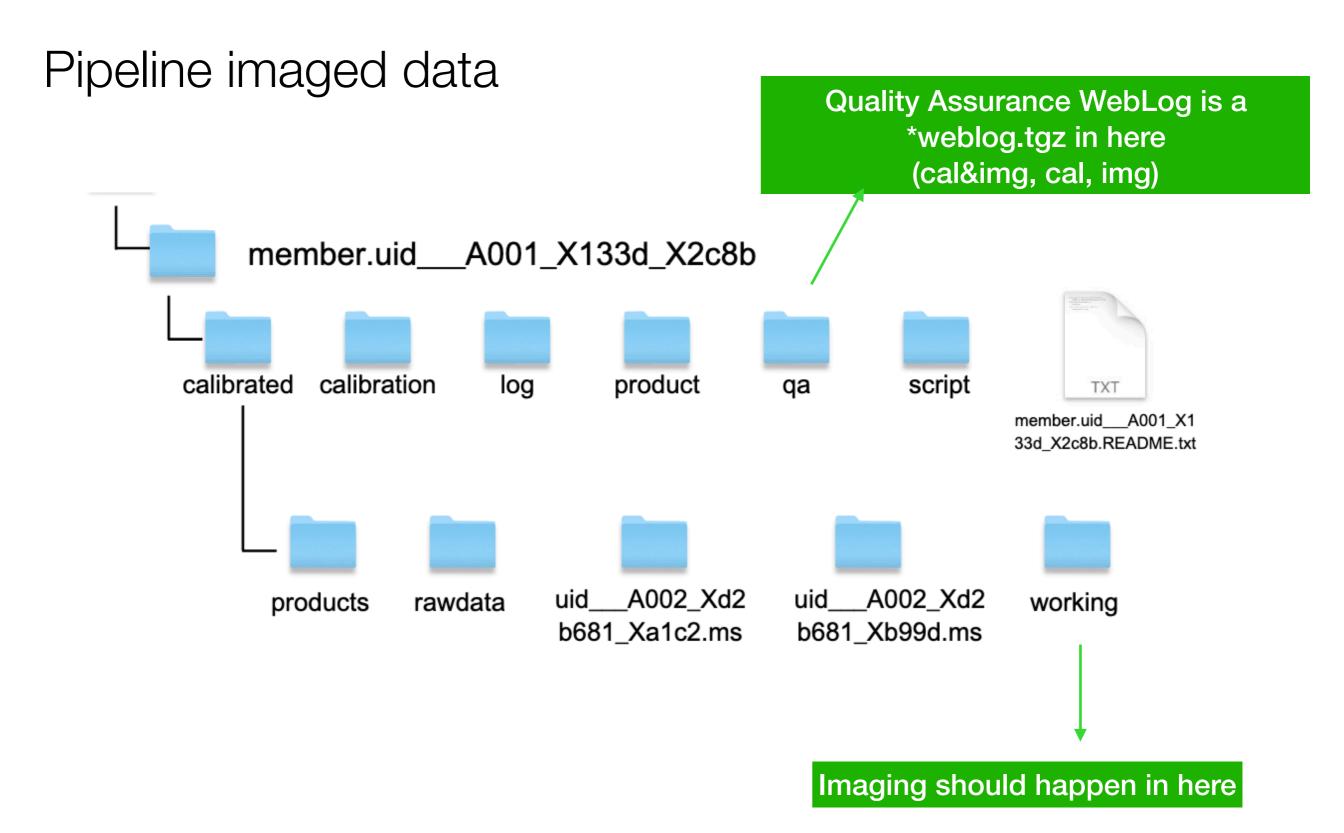
https://almascience.eso.org/euarcdata/itrain01/I-TRAIN-01_Imaging_Pipeline_Tafoya.pdf

https://www.youtube.com/watch?v=Tqql8lhvyPE

- Recall "ALMA science Archive Content" talk
- After unpacking the download, e.g.:

> casapy -- pipeline


ALMA Regional Centre


optional configuration file config.py not found, continuing CASA startup without it Using user-supplied startup.py at /home/lmaud/.lmtst.mycasa/startup.py

IPython 7.15.0 -- An enhanced Interactive Python.

Creating a new telemetry file Telemetry initialized. Telemetry will send anonymized usage statistics to NRAO. You can disable telemetry by adding the following line to the config.py file in your rcdir (e.g. ~/.casa/config.py): telemetry enabled = False --> CrashReporter initialized. 2022-09-30 07:31:04 INFO: Environment is not MPI enabled. Pipeline operating in single host mode casaVersion = 6.4.1.122022-09-30 07:31:05 INFO: Environment variable FLUX SERVICE URL not defined. Switching to backup url. 2022-09-30 07:31:05 INFO: Environment variable FLUX SERVICE URL BACKUP not defined. 2022-09-30 07:31:06 INFO: Pipeline version 2022.2.0.64 running on arcp22.hg.eso.org 2022-09-30 07:31:06 INFO: Host environment: 251.6 GiB memory, 12 x Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz running 2022-09 30 07:31:06 INFO: Initializing cli... 2022-09-30 07:31:06 INFO: Loaded CASA tasks from package: h 2022-09-30 07:31:06 INFO: Loaded CASA tasks from package: hif Pipeline has correctly loaded 2022-09-30 07:31:06 INFO: Loaded CASA tasks from package: hifa 2022-09-30 07:31:06 INFO: Loaded CASA tasks from package: hifas 2022-09-30 07:31:06 INFO: Loaded CASA tasks from package: hifv 2022-09-30 07:31:06 INFO: Loaded CASA tasks from package: hsd 2022-09-30 07:31:06 INFO: Loaded CASA tasks from package: bsdn *** You are not working in a subdirectory of /lustre/opsw/work ... *** startup.py: QA2-relevant modules will be imported *** imported casatasks and casatools individually \$Id: analysisUtils.py,v 1.5325 2022/09/29 15:58:38 thunter Exp \$ CASA 6.4.1.12 -- Common Astronomy Software Applications [6.4.1.12] CASA <1>: **EUROPEAN ARC**

- Recall "ALMA science Archive Content" talk
- After unpacking the download, e.g.:

Calibration & Image PL run combined

```
from casarecipes.almahelpers import fixsyscaltimes # SACM/JAO - Fixes
from casatasks import fixplanets
__rethrow_casa_exceptions = True
context = h init()
context.set_state('ProjectSummary', 'proposal_code', '2019.1.00097.S')
context.set state('ProjectSummary', 'proposal title', 'unknown')
context.set state('ProjectSummary', 'piname', 'unknown')
context.set_state('ProjectStructure', 'ous_entity_id', 'uid://A001/X13b9/Xbf')
context.set_state('ProjectStructure', 'ous_part_id', 'X928641954')
context.set state('ProjectStructure', 'ous title', 'Undefined')
context.set_state('ProjectStructure', 'ps_entity_id', 'uid://A001/X13b9/Xc3')
context.set state('ProjectStructure', 'ousstatus entity id', 'uid://A001/X1528/X2a2')
context.set_state('ProjectStructure', 'ppr_file', '/opt/pipelinedriver/2021FEB/mnt/dataproc/2019.1.00097.S_2021
_A001_X1528_X2a0/GOUS_uid _A001_X1528_X2a1/MOUS_uid _A001_X1528_X2a2/working/PPR_uid _A001_X1528_X2a3.xml')
context.set state('ProjectStructure', 'recipe name', 'hifa calimage')
try:
    hifa_importdata(dbservice=True, vis=['uid___A002_Xed07bd_X15e'], session=['session_1'])
    fixsyscaltimes(vis='uid A002 Xed07bd X15e.ms') # SACM/JA0 - Fixes
    h_save() # SACM/JAO - Finish weblog after fixes
    h_init() # SACM/JAO - Restart weblog after fixes
    hifa importdata(dbservice=True, vis=['uid A002 Xed07bd X15e'], session=['session 1'])
    hifa_flagdata(pipelinemode="automatic")
    hifa fluxcalflag(pipelinemode="automatic")
    hif rawflagchans(pipelinemode="automatic")
    hif refant(pipelinemode="automatic")
    h tsyscal(pipelinemode="automatic")
    hifa tsysflag(pipelinemode="automatic")
    hifa antpos(pipelinemode="automatic")
    hifa wvrgcalflag(pipelinemode="automatic")
    hif_lowgainflag(pipelinemode="automatic")
    hif setmodels(pipelinemode="automatic")
    hifa_bandpassflag(pipelinemode="automatic")
    hifa bandpass(pipelinemode="automatic")
    hifa spwphaseup(pipelinemode="automatic")
    hifa_gfluxscaleflag(pipelinemode="automatic")
    hifa_gfluxscale(pipelinemode="automatic")
    hifa timegaincal(pipelinemode="automatic")
    hifa targetflag(pipelinemode="automatic")
    hif_applycal(pipelinemode="automatic")
    hif makeimlist(intent='PHASE, BANDPASS, AMPLITUDE')
    hif makeimages(pipelinemode="automatic")
    hif makeimlist(intent='CHECK', per eb=True)
    hif_makeimages(pipelinemode="automatic")
    hifa imageprecheck(pipelinemode="automatic")
    hif checkproductsize(maxcubesize=40.0, maxcubelimit=60.0, maxproductsize=350.0)
    hifa_exportdata(pipelinemode="automatic")
    hif mstransform(pipelinemode="automatic")
    hifa_flagtargets(pipelinemode="automatic")
    hif_makeimlist(specmode='mfs')
    hif findcont(pipelinemode="automatic")
    hif_uvcontfit(pipelinemode="automatic")
    hif_uvcontsub(pipelinemode="automatic")
    hif makeimages(pipelinemode="automatic")
    hif_makeimlist(specmode='cont')
    hif makeimages(pipelinemode="automatic")
    hif makeimlist(specmode='cube')
```

Calibration & Image PL run SEPARATE

```
_rethrow_casa_exceptions = True
                                      context = h_init()
          CAL
                                    context.set_state('ProjectSummary', 'proposal_code', '2018.1.00526.S')
context.set_state('ProjectSummary', 'piname', 'unknown')
                                     context.set_state('ProjectSummary', 'proposal_title', 'unknown')
                                      context.set_state('ProjectStructure', 'ous_part_id', 'X446126180')
                                     context.set_state('ProjectStructure', 'ous_title', 'Undefined')
context.set_state('ProjectStructure', 'ppr_file', '/opt/dared/opt/dared.2018AUG/mnt/dataproc/2
                                     2019_01_03T12_52_58.189/S0US_uid___A001_X133d_X1ec3/G0US_uid___A001_X133d_X1ec7/M0US_uid___A001_X133d_X1ec7/M0US_uid___A001_X133d_X1ec7/M0US_uid___A001_X133d_X1ec3/G0US_uid___A001_X133d_X1ec3/G0US_uid___A001_X133d_X1ec3/G0US_uid___A001_X133d_X1ec3/G0US_uid___A001_X133d_X1ec3/G0US_uid___A001_X133d_X1ec3/G0US_uid___A001_X133d_X1ec3/G0US_uid___A001_X133d_X1ec3/G0US_uid___A001_X133d_X1ec3/G0US_uid___A001_X133d_X1ec3/G0US_uid___A001_X133d_X1ec3/G0US_uid___A001_X133d_X1ec3/G0US_uid___A001_X133d_X1ec3/G0US_uid___A001_X133d_X1ec3/G0US_uid___A001_X133d_X1ec3/G0US_uid_X1ec3/G0US_UId_X1A001_X133d_X1ec3/G0US_UId_X1A001_X133d_X1ec3/G0US_UId_X1A001_X133d_X1ec3/G0US_UId_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A001_X1A0001_X1A001_X1A001_X1A001_X1A001_X1A0001_X1A0001_X1A0001_X1A0001_X1A00000X1A0000X1A0000X1A0000X1A0000X1A0000X1A0000X1A000X1A0000X1A0000X1A000X1A0000X1A000X1A000X1A000X1A000X1A000X1A000X1A000X1A000X1A000X1A000X1A000X1A000X1A000X1A000X1A000X1A000X1A000X1A000X1A000X1A000X1A000X1A000X1A000X1A000X1A000X1A000X1A000X1A000X1A000X1A000X1A000X1A000X1A000X1A00X1A000X1A000X1A000X1A000X1A000X1A000X1A000X1A000X1A000X
                                      working/PPR_uid _ A001_X133d_X1ec9.xml')
                                    context.set_state('ProjectStructure', 'ps_entity_id', 'uid://A001/X12eb/X270')
context.set_state('ProjectStructure', 'recipe_name', 'hifa_cal')
                                     context.set state('ProjectStructure', 'ous entity id', 'uid://A001/X12eb/X26c')
                                     context.set_state('ProjectStructure', 'ousstatus_entity_id', 'uid://A001/X133d/X1ec8')
                                     try:
                                            hifa_importdata(vis=['uid__A002_Xd704f8_Xf10b'], dbservice=False, session=['session_1'])
                                           hifa_flagdata(pipelinemode="automatic")
                                           hifa_fluxcalflag(pipelinemode="automatic")
                                            hif_rawflagchans(pipelinemode="automatic")
                                           hif_refant(pipelinemode="automatic")
                                            h_tsyscal(pipelinemode="automatic")
                                            hifa_tsysflag(pipelinemode="automatic")
                                            hifa_antpos(pipelinemode="automatic")
                                            hifa_wvrgcalflag(pipelinemode="automatic")
                                            hif_lowgainflag(pipelinemode="automatic")
                                            hif_setmodels(pipelinemode="automatic")
                                           hifa_bandpassflag(pipelinemode="automatic")
                                            hifa spwphaseup(pipelinemode="automatic")
                                            hifa_gfluxscaleflag(pipelinemode="automatic")
                                            hifa gfluxscale(pipelinemode="automatic")
                                            hifa_timegaincal(pipelinemode="automatic")
                                            hif applycal(pipelinemode="automatic")
                                            hif_makeimlist(intent='PHASE, BANDPASS')
                                            hif makeimages(pipelinemode="automatic")
                                           hif_makeimlist(per_eb=True, intent='CHECK')
                                            hif makeimages(pipelinemode="automatic")
                                            hifa_imageprecheck(pipelinemode="automatic")
                                            hif checkproductsize(maxproductsize=350.0, maxcubesize=40.0, maxcubelimit=60.0)
                                     finally:
                                           h save()
IMAGING
                                              _rethrow_casa_exceptions = True
                                           context = h init()
                                           context.set_state('ProjectSummary', 'proposal_code', '2018.1.00526.S')
                                           context.set_state('ProjectSummary', 'piname', 'unknown')
context.set_state('ProjectSummary', 'proposal_title', 'unknown')
                                           context.set_state('ProjectStructure', 'ous_part_id', 'X446126180')
                                           context.set_state('ProjectStructure', 'ous_title', 'Undefined')
                                           context.set state('ProjectStructure', 'ppr file', '/opt/dared/opt/dared.20180CT/mnt/dat
                                           01 X133d X1ec9.xml')
                                          context.set_state('ProjectStructure', 'ps_entity_id', 'uid://A001/X12eb/X270')
context.set_state('ProjectStructure', 'recipe_name', 'hifa_image')
                                           context.set_state('ProjectStructure', 'ous_entity_id', 'uid://A001/X12eb/X26c')
                                           context.set_state('ProjectStructure', 'ousstatus_entity_id', 'uid://A001/X133d/X1ec8')
                                           try:
                                                  hifa_restoredata(vis=['/opt/dared/opt/dared.20180CT/mnt/dataproc/2018.1.00526.S_201
                                           ['session 1'], copytoraw=False)
                                                 hif_mstransform(pipelinemode="automatic")
                                                  hifa flagtargets(pipelinemode="automatic")
                                                  hifa imageprecheck(pipelinemode="automatic")
                                                  hif checkproductsize(maxproductsize=350.0, maxcubesize=40.0, maxcubelimit=60.0)
                                                  hif_makeimlist(specmode='mfs')
                                                  hif_findcont(pipelinemode="automatic")
                                                  hif uvcontfit(pipelinemode="automatic")
                                                  hif_uvcontsub(pipelinemode="automatic")
                                                  hif makeimages(pipelinemode="automatic")
                                                  hif makeimlist(specmode='cont')
                                                 hif_makeimages(pipelinemode="automatic")
                                                  hif makeimlist(specmode='cube')
                                                  hif_makeimages(pipelinemode="automatic")
                                                  hif makeimlist(specmode='repBW')
                                                  hif_makeimages(pipelinemode="automatic")
                                           finally:
                                                  h save()
```

from casarecipes.almahelpers import fixsyscaltimes # SACM/JAO - Fixes

Calibration & Image PL run combined

Calibration & Image PL run SEPARATE

hifa_importdata(vis=['uid__A002_Xd704f8_Xf10b'], dbservice=False, session=['session_1'])
bifa_fleadeta(pipeliperade_"automatic")

from casatasks import fixplanets de="automatic") Pipeline running is tracked in a 'Context', de="automatic" context = h init() comatic") context.set state('ProjectSummary', omatic") proposal co so it knows the stage and what to do. context.set state('ProjectSummary', 'proposal ti automatic" tomatic") context.set state('ProjectSummary', 'piname', de="automatic" context.set_state('ProjectStructure', 'ous_entity ="automatic") context.set state('ProjectStructure', 'ous part 'automatic") context.set state('ProjectStructure', 'ous title ode="automatic"] Must always be initialised! (and saved) context.set_state('ProjectStructure', 'ps_entity ="automatic") context.set state('ProjectStructure', 'ousstatus mode="automatic"] ="automatic") context.set_state('ProjectStructure', 'ppr_file' e="automatic" _A001_X1528_X2a0/GOUS_uid___A001_X1528_X2a1/MOUS automatic") context.set_state('ProjectStructure', 'recipe_name , BANDPASS ') Task order is important, Pipeline won't work by try: 'automatic") hifa_importdata(dbservice=True, vis=['uid_ intent='CHECK') fixsyscaltimes(vis='uid A002 Xed07bd X15e. "automatic") running out of sequence or forcing 'modified' data h_save() # SACM/JAO - Finish weblog after fix ductsize=350.0, maxcubesize=40.0, maxcubelimit=60.0) h_init() # SACM/JAO - Restart weblog after f hifa importdata(dbservice=True, vis=['uid A002 Xed0/bd X15e'], session=['session 1']) h save() hifa_flagdata(pipelinemode="automatic") hifa fluxcalflag(pipelinemode="automatic") IMAGING hif rawflagchans(pipelinemode="automatic") hif refant(pipelinemode="automatic") ethrow casa exceptions = True h tsyscal(pipelinemode="automatic") context = h init() hifa tsysflag(pipelinemode="automatic") posal code', '2018.1.00526.S') set state hifa antpos(pipelinemode="automatic") context.set_state('ProjectSummary', 'piname', 'unknown') hifa wvrgcalflag(pipelinemode="automatic") context.set state('ProjectSummary', 'proposal title', 'unknown') hif_lowgainflag(pipelinemode="automatic") context.set_state('ProjectStructure', 'ous_part_id', 'X446126180') hif setmodels(pipelinemode="automatic") context.set_state('ProjectStructure', 'ous_title', 'Undefined') hifa_bandpassflag(pipelinemode="automatic") context.set state('ProjectStructure', 'ppr file', '/opt/dared/opt/dared.20180CT/mnt/dat hifa bandpass(pipelinemode="automatic") 01 X133d X1ec9.xml') hifa_spwphaseup(pipelinemode="automatic") context.set_state('ProjectStructure', 'ps_entity_id', 'uid://A001/X12eb/X270') hifa_gfluxscaleflag(pipelinemode="automatic") context.set_state('ProjectStructure', 'recipe_name', 'hifa_image') hifa_gfluxscale(pipelinemode="automatic") context.set_state('ProjectStructure', 'ous_entity_id', 'uid://A001/X12eb/X26c') context.set_state('ProjectStructure', 'ousstatus_entity_id', 'uid://A001/X133d/X1ec8') hifa_timegaincal(pipelinemode="automatic") hifa_targetflag(pipelinemode="automatic") try: hifa_restoredata(vis=['/opt/dared/opt/dared.20180CT/mnt/dataproc/2018.1.00526.S_201 hif_applycal(pipelinemode="automatic") ['session 1'], copytoraw=False) hif makeimlist(intent='PHASE, BANDPASS, AMPLITUDE') hif_mstransform(pipelinemode="automatic") hif makeimages(pipelinemode="automatic") hifa flagtargets(pipelinemode="automatic") hif makeimlist(intent='CHECK', per_eb=True) hifa imageprecheck(pipelinemode="automatic") hif_makeimages(pipelinemode="automatic") hif checkproductsize(maxproductsize=350.0, maxcubesize=40.0, maxcubelimit=60.0) hifa imageprecheck(pipelinemode="automatic") hif_makeimlist(specmode='mfs') hif checkproductsize(maxcubesize=40.0, maxcubelimit=60.0, maxproductsize=350.0) hif_findcont(pipelinemode="automatic") hifa_exportdata(pipelinemode="automatic") hif_uvcontfit(pipelinemode="automatic") hif mstransform(pipelinemode="automatic") hif_uvcontsub(pipelinemode="automatic") hif makeimages(pipelinemode="automatic") hifa_flagtargets(pipelinemode="automatic") hif makeimlist(specmode='cont') hif_makeimlist(specmode='mfs') hif_makeimages(pipelinemode="automatic") hif findcont(pipelinemode="automatic") hif makeimlist(specmode='cube') hif uvcontfit(pipelinemode="automatic") hif_makeimages(pipelinemode="automatic") hif_uvcontsub(pipelinemode="automatic") hif_makeimlist(specmode='repBW') hif makeimages(pipelinemode="automatic") hif_makeimages(pipelinemode="automatic") hif_makeimlist(specmode='cont') hif makeimages(pipelinemode="automatic") h save() hif makeimlist(specmode='cube')

Calibration & Image PL run combined

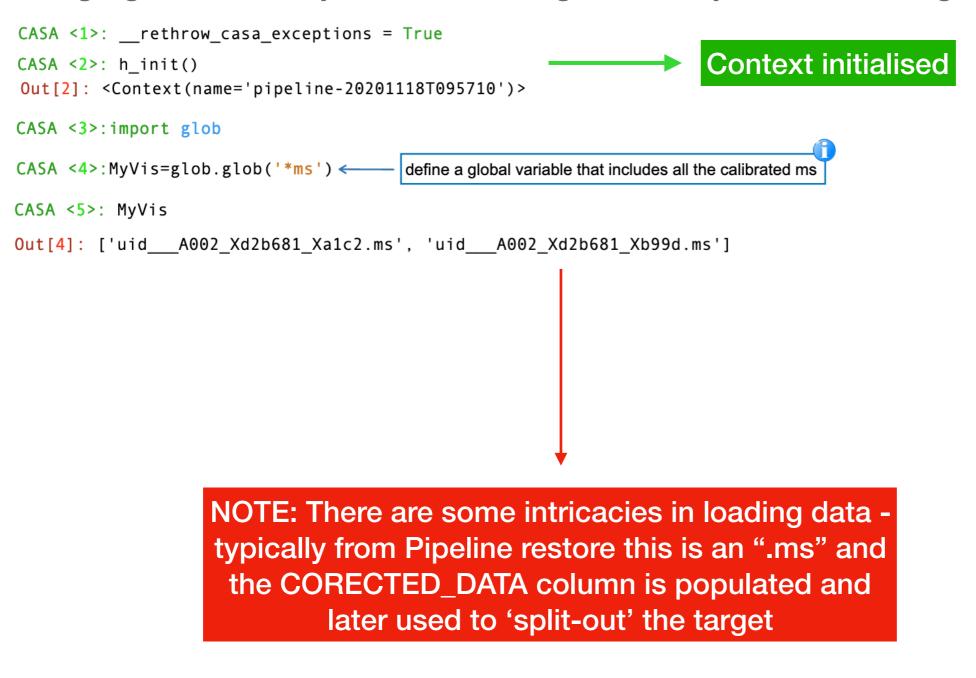
Calibration & image FL fun combineu	<pre>working/PPR_uidA001_X133d_X1ec9.xml') context.set_state('ProjectStructure', 'ps_entity_id', 'uid://A001/X12eb/X270')</pre>
	context.set_state('ProjectStructure', 'ps_chtty_id', 'did.//koof/ki2eb/k2ro'/
	<pre>context.set_state('ProjectStructure', 'ous_entity_id', 'uid://A001/X12eb/X26c')</pre>
	<pre>context.set_state('ProjectStructure', 'ousstatus_entity_id', 'uid://A001/X133d/X1ec8')</pre>
	<pre>try: hifa importdata(vis=['uid A002 Xd704f8 Xf10b'], dbservice=False, session=['session 1'])</pre>
from casarecipes.almahelpers import fixsyscaltimes # SACM/JAO - Fixes	hifa flagdata(pipelinemode="automatic")
from casatasks import fixplanets	hifa_fluxcalflag(pipelinemode="automatic")
rethrow_casa_exceptions = True	hif_rawflagchans(pipelinemode="automatic")
<pre>context = h_init()</pre>	hif_refant(pipelinemode="automatic")
context.set_state('ProjectSummary', 'proposal_code', '2019.1.00097.S')	h_tsyscal(pipelinemode="automatic")
context.set_state('ProjectSummary', 'proposal_title', 'unknown')	hifa_tsysflag(pipelinemode="automatic")
context.set_state('ProjectSummary', 'piname', 'unknown')	<pre>hifa_antpos(pipelinemode="automatic") hifa_wvrgcalflag(pipelinemode="automatic")</pre>
context.set_state('ProjectStructure', 'ous_entity_id', 'uid://A001/X13b9/Xbf')	hif_lowgainflag(pipelinemode="automatic")
<pre>context.set_state('ProjectStructure', 'ous_part_id', 'X928641954')</pre>	hif_setmodels(pipelinemode="automatic")
<pre>context.set_state('ProjectStructure', 'ous_title', 'Undefined')</pre>	<pre>hifa_bandpassflag(pipelinemode="automatic")</pre>
<pre>context.set_state('ProjectStructure', 'ps_entity_id', 'uid://A001/X13b9/Xc3')</pre>	hifa_spwphaseup(pipelinemode="automatic")
<pre>context.set_state('ProjectStructure', 'ousstatus_entity_id', 'uid://A001/X1528/X2a2') context.set_state('ProjectStructure', 'ousstatus_entity_id', 'uid://A001/X1528/X2a2')</pre>	<pre>hifa_gfluxscaleflag(pipelinemode="automatic") hifa_gfluxscale(pipelinemode="automatic")</pre>
context.set_state('ProjectStructure', 'ppr_file', '/opt/pipelinedriver/2021FEB/mnt/dataproc/2019.1.00097.S_2021_	hifa timegaincal(pipelinemode="automatic")
A001_X1528_X2a0/GOUS_uidA001_X1528_X2a1/MOUS_uidA001_X1528_X2a2/working/PPR_uidA001_X1528_X2a3.xml') context.set_state('ProjectStructure', 'recipe_name', 'hifa_calimage')	hif_applycal(pipelinemode="automatic")
	hif_makeimlist(intent='PHASE,BANDPASS')
try: hifa_importdata(dbservice=True, vis=['uidA002_Xed07bd_X15e'], session=['session_1'])	<pre>hif_makeimages(pipelinemode="automatic")</pre>
fixsyscaltimes(vis='uidA002_Xed07bd_X15e.ms') # SACM/JAO - Fixes	<pre>hif_makeimlist(per_eb=True, intent='CHECK') hif_makeimease(sizelisemede="automatic")</pre>
h save() # SACM/JAO - Finish weblog after fixes	hif_makeimages(pipelinemode="automatic") hifa_imageprecheck(pipelinemode="automatic")
h init() # SACM/JAO - Restart weblog after fixes	hif_checkproductsize(maxproductsize=350.0, maxcubesize=40.0, maxcubelimit=60.0)
hifa_importdata(dbservice=True, vis=['uidA002_Xed07bd_X15e'], session=['session_1'])	finally:
hifa_flagdata(pipelinemode="automatic")	h_save()
hifa fluxcalflag(pipelipemode="automatic")	
hif_rawflagchans(pipelinemode="automatic")	MAGING
hif_refant(pipelinemode="automatic")	
h_tsyscal(pipelinemode="automatic")	rethrow_casa_exceptions = True
hifa_tsysflag(pipelinemode="automatic")	<pre>context = h_init() context cot state(UPrejectSummers() Uprepeed code(12018 1 00526 SL)</pre>
hifa_antpos(pipelinemode="automatic")	<pre>context.set_state('ProjectSummary', 'proposal_code', '2018.1.00526.S') context.set_state('ProjectSummary', 'piname', 'unknown')</pre>
hifa_wvrgcalflag(pipelinemode="automatic")	context.set_state('ProjectSummary', 'proposal_title', 'unknown')
hif_lowgainflag(pipelinemode="automatic")	<pre>context.set_state('ProjectStructure', 'ous_part_id', 'X446126180')</pre>
hif_setmodels(pipelinemode="automatic")	<pre>context.set_state('ProjectStructure', 'ous_title', 'Undefined')</pre>
hifa_bandpassflag(pipelinemode="automatic")	<pre>context.set_state('ProjectStructure', 'ppr_file', '/opt/dared/opt/dared.20180CT/mnt/dat</pre>
hifa_bandpass(pipelinemode="automatic") hifa_spwphaseup(pipelinemode="automatic")	01_X133d_X1ec9.xml')
hifa_spwphaseup(pipelinemode="automatic") hifa_gfluxscaleflag(pipelinemode="automatic") CAUTION - this default s	context.set_state('ProjectStructure', 'ps_entity_id', 'uid://A001/X12eb/X270') context.set_state('ProjectStructure', 'recipe_name', 'hifa_image')
hifa dfluxscale(ninelinemode="automatic")	context set state('ProjectStructure' 'ous entity id' 'uid'//A001/X12eb/X26c')
hifa_timegaincal(pipelinemode="automatic") contains a restore cal -	<pre>context.set_state('ProjectStructure', 'ousstatus_entity_id', 'uid://A001/X133d/X1ec8')</pre>
hifa_targetflag(pipelinemode="automatic")	try:
	hifa_restoredata(vis=['/opt/dared/opt/dared.20180CT/mnt/dataproc/2018.1.00526.S_201
hif_applycal(pipelinemode="automatic") hif_makeimlist(intent='PHASE, BANDPASS, AMPLITUDE') don't re-run if you alrea	CV ['session_1'], copytoraw=False)
hit makeimages(pipelinemode="automatic")	hife floateraate (pipelinemede HoutematicH)
hif_makeimlist(intent='CHECK', per_eb=True) hif_makeimages(pipelinemode="automatic")	hifa_imageprecheck(pipelinemode="automatic")
	hif checkproductsize(maxproductsize=350.0, maxcubesize=40.0, maxcubelimit=60.0)
hifa_imageprecheck(pipelinemode="automatic")	hif makeimlist(specmode='mfs')
hif_checkproductsize(maxcubesize=40.0, maxcubelimit=60.0, maxproductsize=350.0)	<pre>hif_findcont(pipelinemode="automatic")</pre>
hifa_exportdata(pipelinemode="automatic")	hif_uvcontfit(pipelinemode="automatic")
hif_mstransform(pipelinemode="automatic")	hif_uvcontsub(pipelinemode="automatic")
<pre>hifa_flagtargets(pipelinemode="automatic") bif mekainlist(anormada=lafa)</pre>	<pre>hif_makeimages(pipelinemode="automatic") hif makeimlist(specmode='cont')</pre>
hif_makeimlist(specmode='mfs') hif_findcont(pipelinemode="automatic")	ig related hif_makeimlist(specmode='cont') hif_makeimages(pipelinemode="automatic")
hif_uvcontfit(pipelinemode="automatic")	hif_makeimlist(specmode='cube')
hif uvcontsub(pipelinemode="automatic")	hif_makeimages(pipelinemode="automatic")
hif_makeimages(pipelinemode="automatic")	hif_makeimlist(specmode='repBW')
hif makeimlist(specmode='cont')	hif makeimages(pipelinemode="automatic")
hif_makeimages(pipelinemode="automatic")	finally:
hif makeimlist(specmode='cube')	h_save()

Calibration & Image PL run SEPARATE

context.set_state('ProjectSummary', 'proposal_code', '2018.1.00526.S')
context.set_state('ProjectSummary', 'piname', 'unknown')
context.set_state('ProjectSummary', 'proposal_title', 'unknown')

context.set_state('ProjectStructure', 'ous_part_id', 'X446126180')
context.set_state('ProjectStructure', 'ous_title', 'Undefined')
context.set_state('ProjectStructure', 'ppr_file', '/opt/dared/opt/dared.2018AUG/mnt/dataproc/2

2019_01_03T12_52_58.189/S0US_uid___A001_X133d_X1ec3/G0US_uid___A001_X133d_X1ec7/M0US_uid___A00

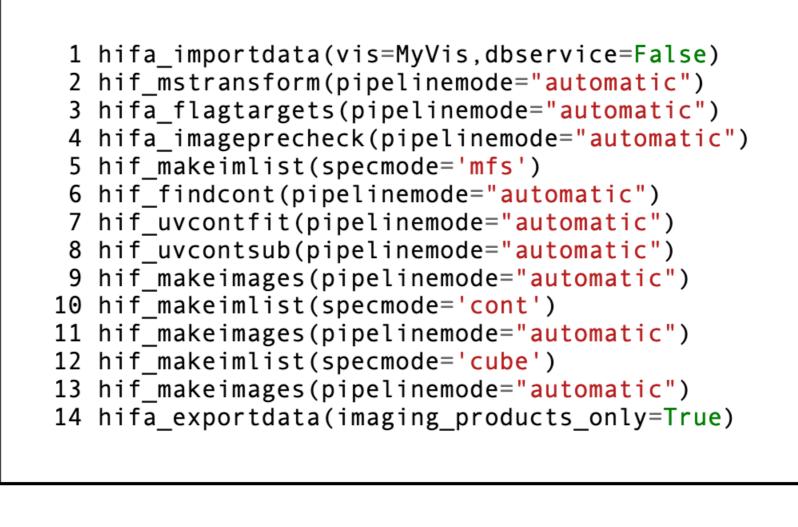

__rethrow_casa_exceptions = True

working/PPR_uid__A001_X133d_X1ec9.xml')

context = h_init()

CAL

• Imaging interactively in the 'working' directory after restoring the data


EUROPEAN ARC ALMA Regional Centre

• Imaging interactively in the 'working' directory after restoring the data

Default commands as from the imaging script:
Run as script (defaults) will recreate images that Pipeline made
Run stop by stop (defaults) also represtop what Pipeline made

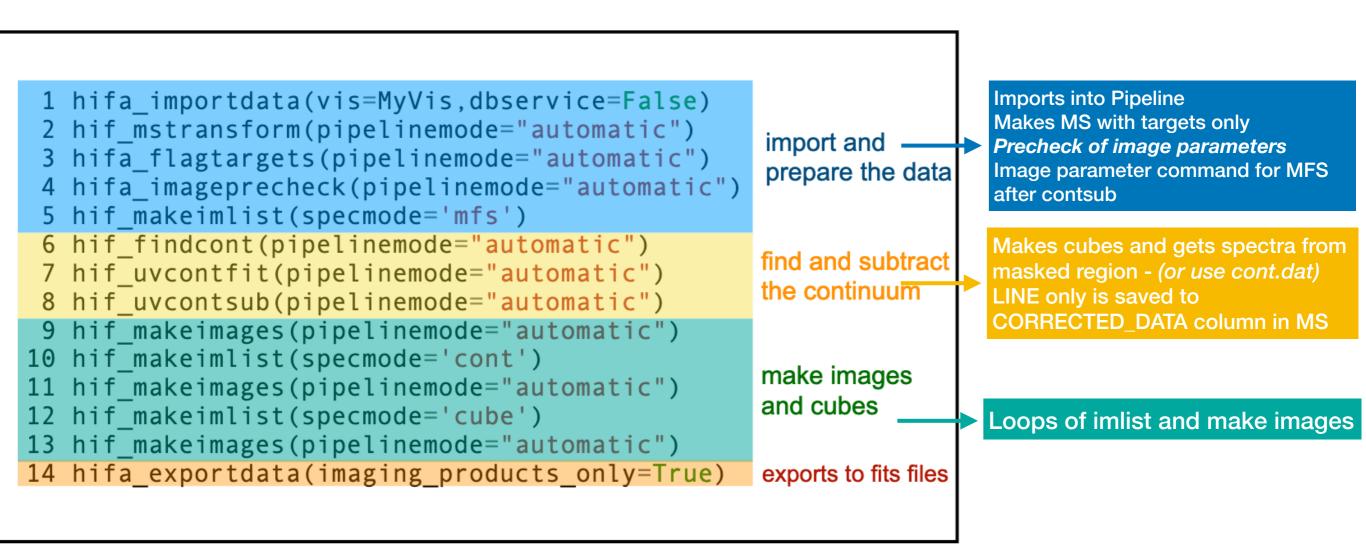

- Run step-by-step (defaults) also recreates what Pipeline made
 Due step by step with some shapped, step in Webling
- Run step-by-step with some changes track also in WebLog

Image Parameters

• Imaging interactively in the 'working' directory after restoring the data

EUROPEAN ARC ALMA Regional Centre CAUTION - changes from Cycle 9 - files made for imaging will be: (1) targets - cont+line (2) targets_line - line only (after cont-sub)

Imaging interactively in the 'working' directory after restoring the data

As of late 2022 - Cycle 8 "scriptForPI.py" has an option to 'docontsub' which prepares Pipeline calibrated data ready for imaging loops Imports into Pipeline 1 hifa importdata(vis=MyVis,dbservice=False) Makes MS with targets only 2 hif mstransform(pipelinemode="automatic") imr JUD Precheck of image parameters hifa flagtargets(pipelinemode="automatic") 3 re the data Image parameter command for MFS hifa imageprecheck(pipelinemode="automatic" 4 after contsub 5 hif makeimlist(specmode='mfs') hif findcont(pipelinemode="automatic") Makes cubes and gets spectra from find and subtract hif_uvcontfit(pipelinemode="automatic") masked region - (or use cont.dat) the continuum LINE only is saved to hif uvcontsub(pipelinemode="automatic") **CORRECTED DATA column in MS** hif makeimages(pipelinemode="automatic") 9 hif makeimlist(specmode='cont') 10 make images 11 hif makeimages(pipelinemode="automatic") and cubes hif makeimlist(specmode='cube') 12 Loops of imlist and make images hif makeimages(pipelinemode="automatic") 13 14 hifa_exportdata(imaging_products only=True) exports to fits files

EUROPEAN ARC ALMA Regional Centre CAUTION - changes from Cycle 9 - files made for imaging will be: (1) targets - cont+line (2) targets_line - line only (after cont-sub)

• Recall the image precheck - setup image parameters (records inside context for automatic mode imaging) - what setting to use that the PI wanted

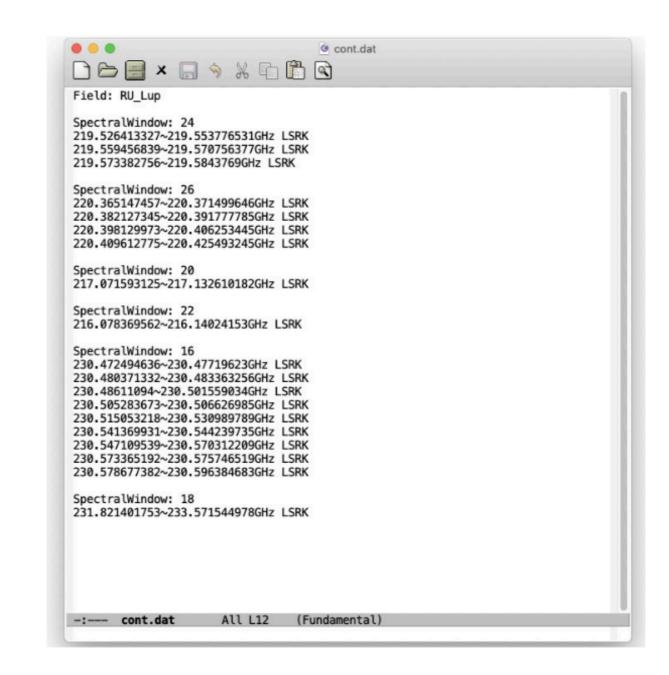
• Archive users - this can be a guide, but image parameter can be changed later

Goals From OT:

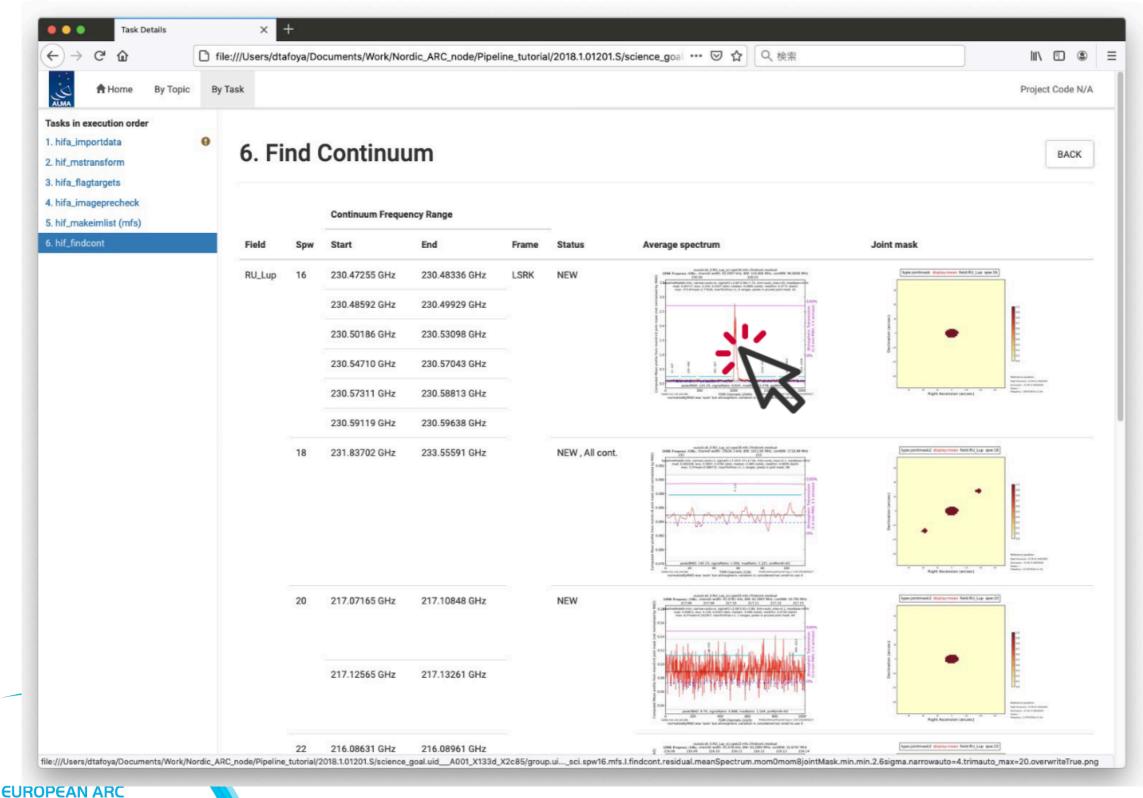
Representative Target: LkCa15 Representative Frequency: 663.9863 GHz (SPW 37) Bandwidth for Sensitivity: 1.5e+04 MHz Min / Max Acceptable Resolution: 0.146 arcsec / 0.179 arcsec Maximum expected beam axial ratio (from OT): Not available Goal PI sensitivity: Not available Single Continuum: False

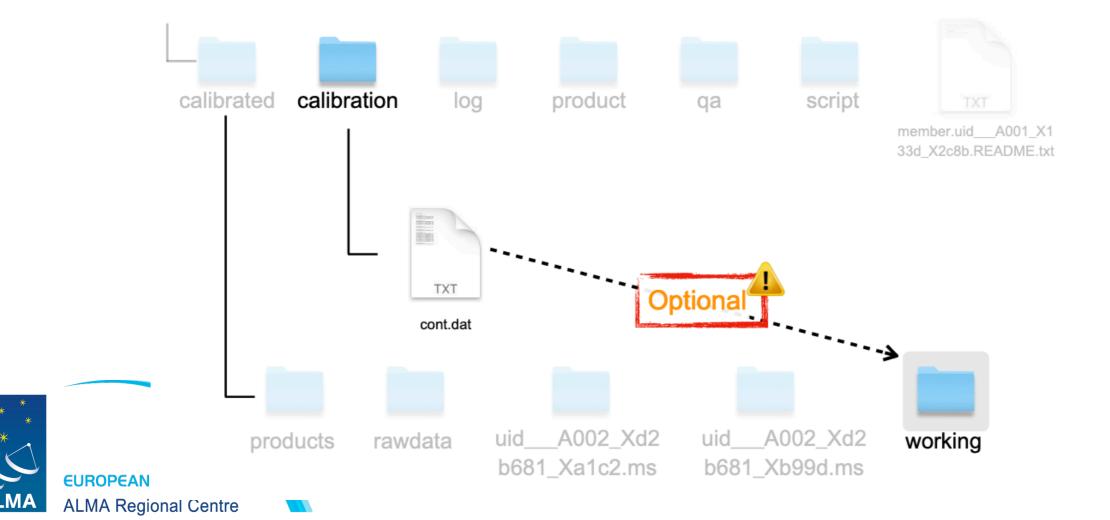
Estimated Synthesized Beam and Sensitivities for the Representative Target/Frequency

Estimates are given for four possible values of the tclean robust weighting parameter: robust = 0.0, +0.5 (default), +1.0, and +2.0. If the "Min / Max Acceptable Resolution" is available (>=Cycle 5 12-m Array data), the robust value closest to the default (+0.5) that predicts a beam area (defined as simply major x minor) that is in the range of the PI requested beam areas acceptable Resolution" is available (>=Cycle 5 12-m Array data), the robust value closest to the default (+0.5) that predicts a beam area (defined as simply major x minor) that is in the range of the PI requested beam areas acceptable Resolution" is available (>=Cycle 5 12-m Array data), the robust value closest to the default (+0.5) that predicts a beam area (defined as simply major x minor) that is in the range of the PI requested beam areas acceptable Resolution" is available (>=Cycle 5 12-m Array data), the robust value closest to the default (+0.5) that predicts a beam area (defined as simply major x minor) that is in the range of the PI requested beam areas acceptable Resolution" is available (>=Cycle 5 12-m Array data), the robust value closest to the default (+0.5) that predicts a beam area (defined as simply major x minor) that is in the range of the PI requested beam areas acceptable Resolution to an estimate for the repBW, an estimate for the aggregate on the aggregate on the specific dusing all spws, otherwise the beam is predicted for the repSPW alone. A message appears on the "By Task" view if a non-default value of robust (i.e., not +0.5) is of within the PI requested range using one of the four robust values, Warning messages appear on this page.

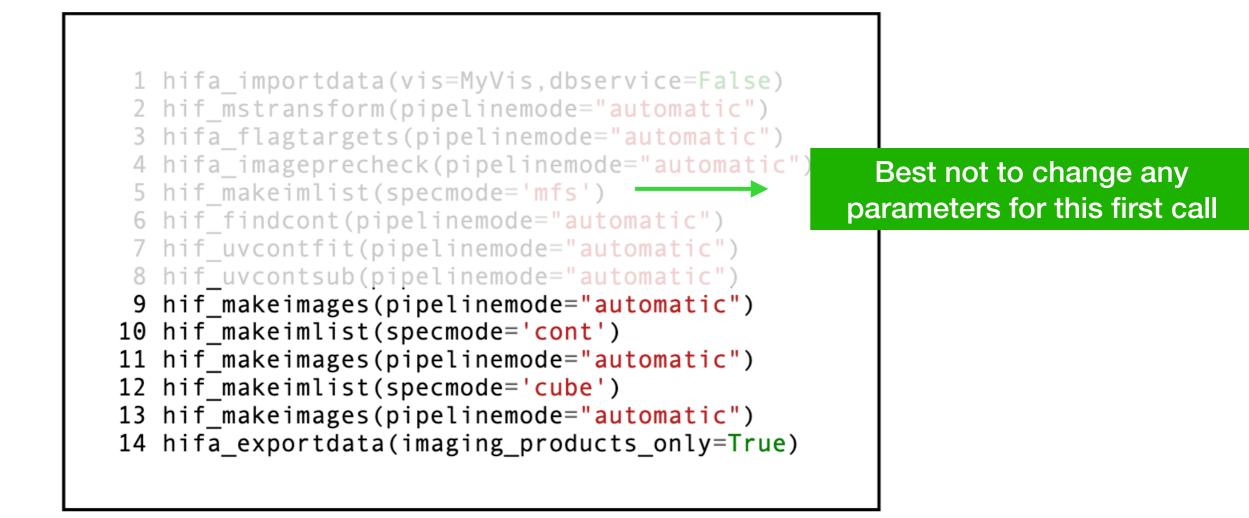

These estimates should always be considered as the BEST CASE SCENARIO. These estimates account for Tsys, the observed uv-coverage, and prior flagging; (2) loss of continuum bandwidth due to the hif_findcont process (i.e. removal of lines and other spectral features from the data used to im quality like (a) poor match of uv-coverage to image complexity; (b) dynamic range effects; (c) calibration deficiencies (poor phase transfer, residual baseline based effects, residual antenna position errors, etc.). It is also important to note that both the repBW and aggBW beam calculations are intrinsically multi-frequency synthesis continuum calculations, using the relevant spws single channel in a cube will typically be larger and can be significantly larger depending on the details of uv-coverage and channel width.

robust	uvtaper	Synthesized Beam	Cell	Beam Ratio	Bandwidth	BW Mode	Effective Sen
0.0	0	0.176 x 0.154 arcsec @ -15.0 deg	0.031 x 0.031 arcsec	1.14	8169 MHz	repBW	0.000373 Jy/t
0.0	0	0.176 x 0.154 arcsec @ -15.0 deg	0.031 x 0.031 arcsec	1.14	8169 MHz	aggBW	0.000373 Jy/t
0.5	0	0.204 x 0.175 arcsec @ -20.2 deg	0.035 x 0.035 arcsec	1.17	8169 MHz	repBW	0.000298 Jy/k
0.5	0	0.204 x 0.175 arcsec @ -20.2 deg	0.035 x 0.035 arcsec	1.17	8169 MHz	aggBW	0.000298 Jy/k
1.0	0	0.245 x 0.206 arcsec @ -22.6 deg	0.041 x 0.041 arcsec	1.19	8169 MHz	repBW	0.00027 Jy/be
1.0	0	0.245 x 0.206 arcsec @ -22.6 deg	0.041 x 0.041 arcsec	1.19	8169 MHz	aggBW	0.00027 Jy/be
2.0	0	0.266 x 0.222 arcsec @ -23.5 deg	0.044 x 0.044 arcsec	1.20	8169 MHz	repBW	0.000268 Jy/k
2.0	0	0.266 x 0.222 arcsec @ -23.5 deg	0.044 x 0.044 arcsec	1.20	8169 MHz	aggBW	0.000268 Jy/k


- Using or modifying the continuum subtraction
- Cont.dat was Pipeline run listing LSRK frequencies of the continuum

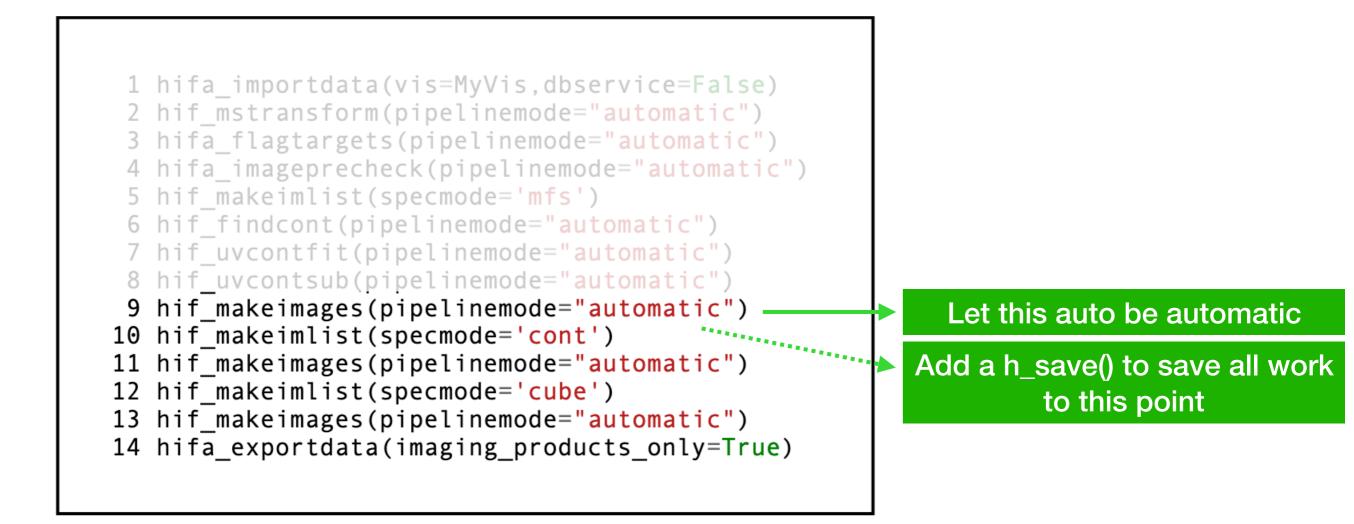

EUROPEAN ARC ALMA Regional Centre

In the weblog (if hif_findcont was run without cont.dat):



ALMA Regional Centre

- Using or modifying the continuum subtraction
- Cont.dat was Pipeline run listing LSRK frequencies of the continuum
 - If you re-run hifa_findcont without a cont.dat file it will simply replicate it (taking time to make image cube and check the spectra)
 - Instead copy the cont.dat to the working area
 - You can inspect the image cubes/products to see if you need to refine the ranges and edit cont.dat (also check the QA report for more information)


• Imaging interactively in the 'working' directory after restoring the data


• Imaging interactively in the 'working' directory after restoring the data

• Imaging interactively in the 'working' directory after restoring the data

If you just run these as defaults, the will simply replicate what images got made and are in the products

EUROPEAN ARC ALMA Regional Centre

- Imaging interactively in the 'working' directory after restoring the data
 - Editing the parameters loops of hifa_makeimlist and hif_makeimages

•••	
CASA <2	<pre>0>: hif_makeimlist(specmode='mfs',robust=-0.5,spw='24',hm_imsize=60))</pre>

• only image spw 24 with robust parameter set to -0.5 and image size = 60pixels.

CASA <21>:	hif_makeimages(pipelinemode="automatic")

- Imaging interactively in the 'working' directory after restoring the data
 - Editing the parameters loops of hifa_makeimlist and hif_makeimages

● ● ●	
CASA <22>: hif_makeimlist(specmode='cube',spw='24',nchan=200,start='219.5530	Hz')

makes a cube of 200 channels of the spw 24, starting ar freq=219.553GHz.

•••	tafoya — -zsh — 143×53
CASA <23>:	hif_makeimages(pipelinemode=" <mark>automatic</mark> ")

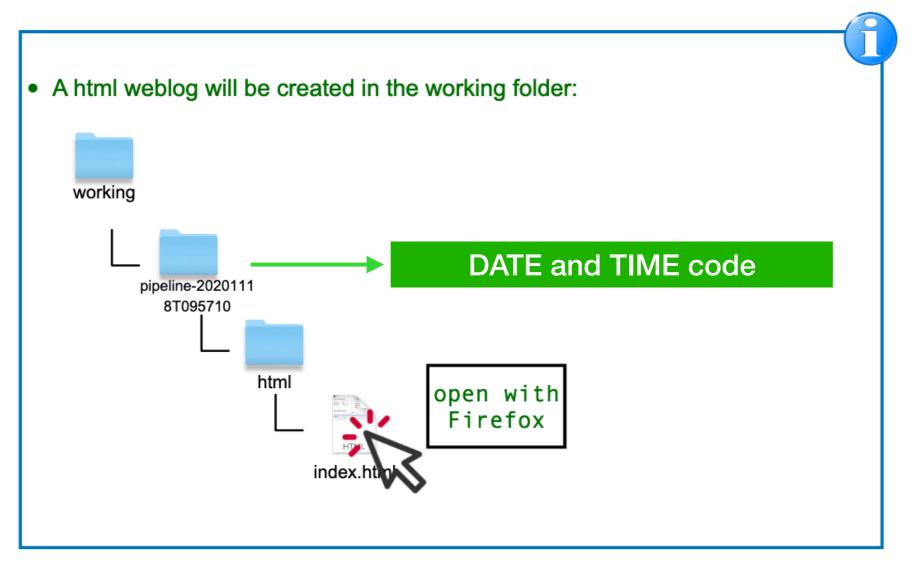
- Imaging interactively in the 'working' directory after restoring the data
 - Editing the parameters loops of hifa_makeimlist and hif_makeimages

dtafoya — -zsh — 143×5 CASA <24>: help(hif makeimlist) Help on instance of hif makeimlist cli in module hif makeimlist cli: hif_makeimlist = class hif_makeimlist_cli_ Methods defined here: call (self, vis=None, imagename=None, intent=None, field=None, spw=None, contfile=None, linesfile=None, uvrange=None, specmode=None, outframe=None, hm imsize=None, hm cell=None, calmaxpix=None, phasecenter=None, nchan=None, start=None, width=None, nbins=None, robust=None, uvtaper=None, clearlist=None, per eb=None, calcsb=None, parallel=None, pipelinemode=None, dryrun=None, acceptresults=None) Compute list of clean images to be produced Detailed Description: Create a a list of images to be cleaned. Arguments : vis: List of input MeasurementSets Default Value:

- Imaging interactively in the 'working' directory after restoring the data
 - Editing the parameters loops of hifa_makeimlist and hif_makeimages

c	lass _hif_makeimages (buil hif_makeimages Co 		
	 Compute clean results	from a list of specified targets.	
	 Output:		
	i		
		e mode is 'getinputs' then None is returned. Otherwise r the pipeline task is returned.	
	 parameter de	escriptions	
1		The list of input MeasurementSets. Defaults to the list of	
	vis 	MeasurementSets specified in the h_init or hif_importdata task.	
	ĺ	'': use all MeasurementSets in the context	
	1	Examples: 'ngc5921.ms', ['ngc5921a.ms', ngc5921b.ms', 'ngc5921c.ms']	
	target_list	Dictionary specifying targets to be imaged; blank will read list from context	
1	hm_masking	Clean masking mode. Options are 'centralregion', 'auto', 'manual' and 'none'	
	hm_sidelobethreshold	sidelobethreshold * the max sidelobe level	
	hm_noisethreshold	noisethreshold * rms in residual image	for masking
	hm_lownoisethreshold	lownoisethreshold * rms in residual image	IUI Masking
	hm_negativethreshold	negativethreshold * rms in residual image	
	hm_minbeamfrac hm_growiterations	Minimum beam fraction for pruning Number of binary dilation iterations for growing the mask	
	hm_dogrowprune	Do pruning on the grow mask	
	!	Defaults to '' to enable the automatic heuristics calculation.	
		Can be set to True or False manually.	
	hm_minpercentchange hm_fastnoise	Mask size change threshold Faster noise calucation for automask or nsigma stopping	
		Paster noise cardcation for automask of nsigma stopping	
	i	Defaults to '' to enable the automatic heuristics calculation.	
1	1	Can be set to True or False manually.	
	hm_nsigma	Multiplicative factor for rms-based threshold stopping	
	hm_perchanweightdensi	ty Calculate the weight density for each channel independently	
	i	Defaults to '' to enable the automatic heuristics calculation.	
	i	Can be set to True or False manually.	
	hm_npixels	Number of pixels to determine uv-cell size for super-uniform weighting	
	hm_cyclefactor	Scaling on PSF sidelobe level to compute the minor-cycle stopping threshold	for a start start start
	hm_minpsffraction hm_maxpsffraction	PSF fraction that marks the max depth of cleaning in the minor cycle PSF fraction that marks the minimum depth of cleaning in the minor cycle	for cleaning
	hm_weighting	Weighting scheme (natural, uniform, briggs, briggsabs[experimental], briggsbwtaper[experimental])	
	hm_cleaning	Pipeline cleaning mode	
*	tlimit	Times the sensitivity limit for cleaning	
*	masklimit	Times good mask pixels for cleaning	
k	cleancontranges	Clean continuum frequency ranges in cubes	
	calcsb hm_mosweight	Force (re-)calculation of sensitivities and beams Mosaic weighting	
	nm_moswergne	Hoodie Heighting	
	Ì	Defaults to '' to enable the automatic heuristics calculation.	
.MA		Can be set to True or False manually.	
	overwrite_on_export	Replace existing image products when h/hifa/hifv_exportdata is	

Automasking parameters for Pipeline


Array	sidelobethreshold	noisethreshold	minbeamfrac	lownoisethreshold	negativethreshold
12m (short) b75<300m	2.0	4.25	0.3	1.5	0.0 (continuum) 15.0 (line)
12m (long) b75>300m	3.0	5.0	0.3	1.5	0.0 (continuum) 7.0 (line)
7m (continnum/line)	1.25	5.0	0.1	2.0	0.0
12m + 7m combined TENTATIVE	2.0	4.25	0.3	1.5	0.0

MUST READ - NRAO guide: https://casaguides.nrao.edu/index.php/Automasking_Guide

- Power of the pipeline imaging is easy to access image 'quick look' using the WebLog
- Initialised with your Pipeline run (care as one was also made for the restore)

- Power of the pipeline imaging is easy to access image 'quick look' using the WebLog
- Initialised with your Pipeline run (care as one was also made for the restore)

Home	× +								
→ C' û Î file	:///Users/dtafoya/Docum	ents/Work/Nordic_AR	C_node/Pipeline_tutorial/20	18.1.0120 •••• 🖾	✿ Q 検索			III\ (
Home By Topic	ByTask							Projec	t Code N/A
Observation Overvi	ew		Pip	eline Sum	mary				
Project	uid://A001/X12ed/X1	103	Pipeli	ne Version	42866 (Pipeline-CASA	(docume	entation)		
Principal Investigator	janehuang	janehuang			5.6.1-8 (environment)				
Observation Start	2018-10-02 17:33:17 UTC		Pipeli	Pipeline Start 2020-11-18 08:10:4		1:10:43 UTC			
Observation End	2018-10-02 21:08:47	итс	Execu	tion Duration	0:03:55				
Observation End		итс	Execu Time (UTC)	tion Duration	0:03:55	Basel	ine Length		
		UTC Num Antennas		tion Duration		Basel ource Min	ine Length Max	RMS	Size
Observation Summ	Receivers	Num Antennas	Time (UTC) Start	End		(45) (27)	1	RMS	Size
Observation Summ	Receivers	Num Antennas	Time (UTC) Start	End		(45) (27)	1	RMS	Size
Observation Summ Measurement Set Observing Unit Set Status: unknown S	Receivers	Num Antennas	Time (UTC) Start	End	On S	ource Min	1	RMS 25.8 m	Size

 Power of the pipeline imaging is easy to access image 'quick look' using the WebLog

34. Tclean/MakeImages

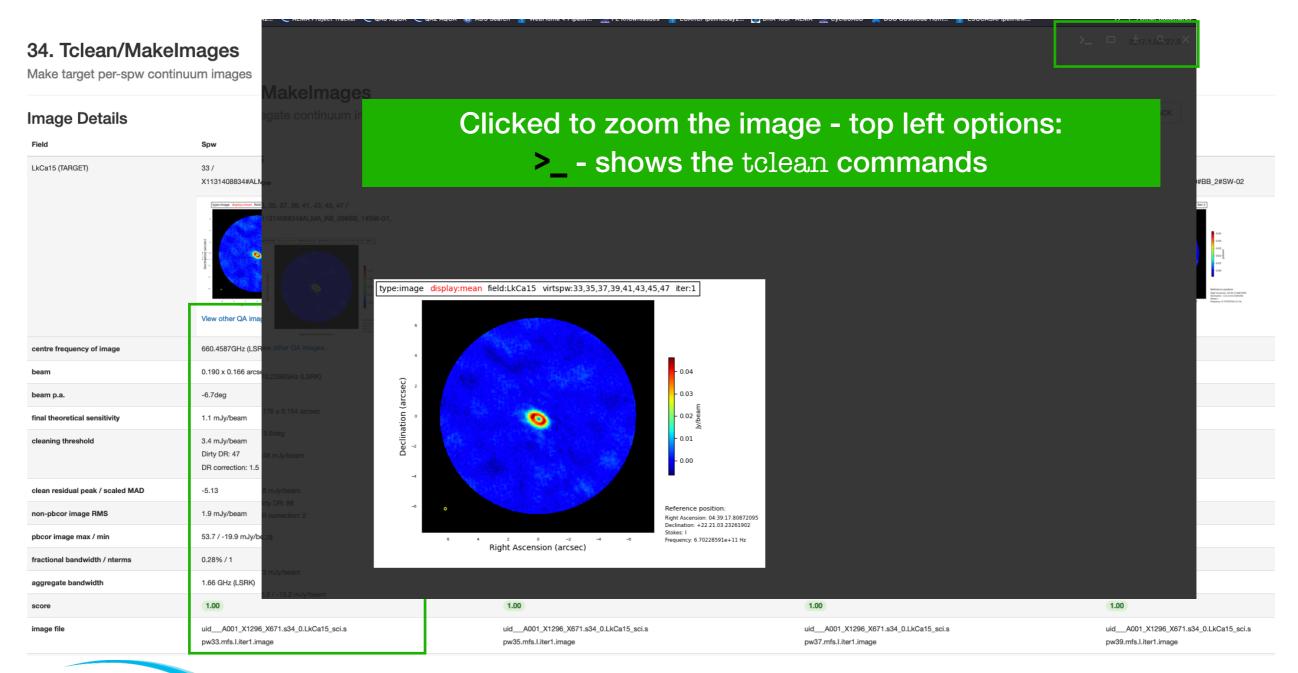

Make target per-spw continuum images

Image Details				
Field	Spw			
LkCa15 (TARGET)	33 / X1131408834#ALMA_RB_09#BB_1#SW-01	35 / X1131408834#ALMA_RB_09#BB_1#SW-02	37 / X1131408834#ALMA_RB_09#BB_2#SW-01	39 / X1131408834#ALMA_RB_09#BB_2#SW-02
	for the difference for the diffe	for the product of the state of	The state of the s	representation of the second s
centre frequency of image	660.4587GHz (LSRK)	679.9961GHz (LSRK)	663.3169GHz (LSRK)	677.0788GHz (LSRK)
beam	0.190 x 0.166 arcsec	0.185 x 0.161 arcsec	0.190 x 0.165 arcsec	0.185 x 0.162 arcsec
beam p.a.	-6.7deg	-8.3deg	-6.9deg	-7.4deg
final theoretical sensitivity	1.1 mJy/beam	1.4 mJy/beam	1.8 mJy/beam	1.2 mJy/beam
cleaning threshold	3.4 mJy/beam Dirty DR: 47 DR correction: 1.5	4.2 mJy/beam Dirty DR: 36 DR correction: 1.5	5.5 mJy/beam Dirty DR: 29 DR correction: 1.5	3.6 mJy/beam Dirty DR: 44 DR correction: 1.5
clean residual peak / scaled MAD	-5.13	4.80	4.22	4.15
non-pbcor image RMS	1.9 mJy/beam	2.3 mJy/beam	2.5 mJy/beam	2 mJy/beam
pbcor image max / min	53.7 / -19.9 mJy/beam	52.4 / -22 mJy/beam	53.9 / -28 mJy/beam	53.1 / -20.3 mJy/beam
fractional bandwidth / nterms	0.28% / 1	0.27% / 1	0.26% / 1	0.27% / 1
aggregate bandwidth	1.66 GHz (LSRK)	1.46 GHz (LSRK)	0.465 GHz (LSRK)	1.85 GHz (LSRK)
score	1.00	1.00	1.00	1.00
image file	uidA001_X1296_X671.s34_0.LkCa15_sci.s pw33.mfs.l.iter1.image	uidA001_X1296_X671.s34_0.LkCa15_sci.s pw35.mfs.l.iter1.image	uidA001_X1296_X671.s34_0.LkCa15_sci.s pw37.mfs.l.iter1.image	uidA001_X1296_X671.s34_0.LkCa15_sci.s pw39.mfs.l.iter1.image

EUROPEAN ARC ALMA Regional Centre

NOTE: slight changes in viewing pages per Cycle (new PL features added)

 Power of the pipeline imaging is easy to access image 'quick look' using the WebLog

EUROPEAN ARC ALMA Regional Centre

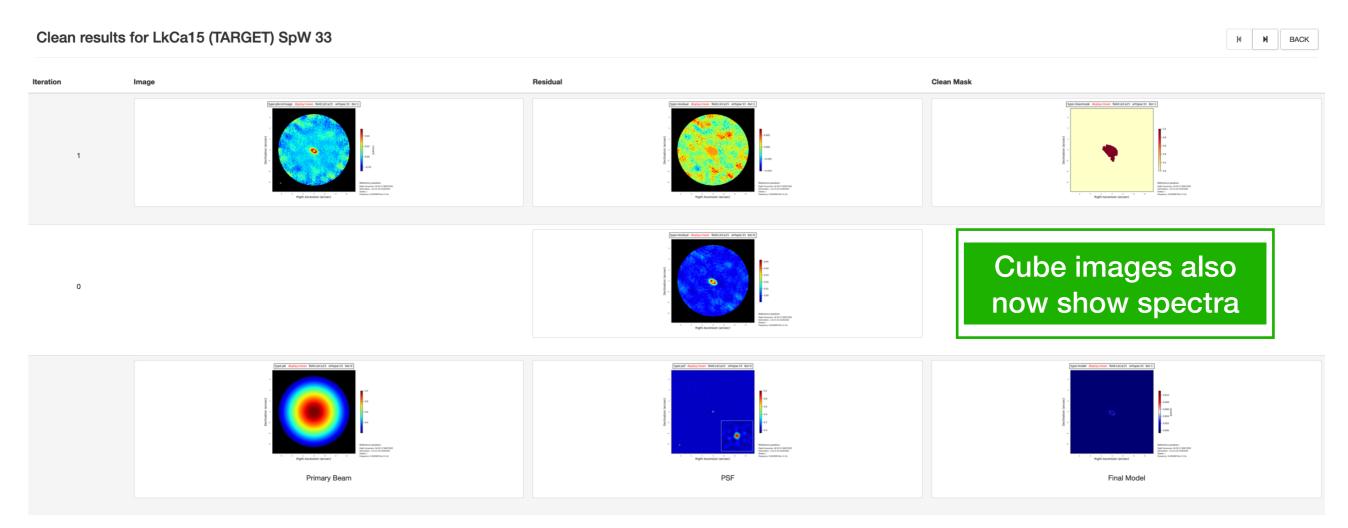
NOTE: slight changes in viewing pages per Cycle (new PL features added)

34. Tclean/MakeImages

Make target per-spw continuum images

Image Details

īeld	Spw			
kCa15 (TARGET)	33 / X1131408834#ALMA_RB_09#BB_1#SW-01	35 / X1131408834#ALMA_RB_09#BB_1#SW-02	37 / X1131408834#ALMA_RB_09#BB_2#SW-01	39 / X1131408834#ALMA_RB_09#BB_2#SW-02
	Tierrage: distribution MetsLack3 ortigers3 mets	Type may: Biply own: Bolt LCL33 Unitye 31 Bir31	(vpermap: disjunce: MELICL3 whps37 Mr1)	(premare digitarmen delucats whores for) (premare digitarmen delucats whores for) (premare digitarmen delucats) (premare
ntre frequency of image	660.4587GHz (LSRK)	679.9961GHz (LSRK)	663.3169GHz (LSRK)	677.0788GHz (LSRK)
am	0.190 x 0.166 arcsec	0.185 x 0.161 arcsec	0.190 x 0.165 arcsec	0.185 x 0.162 arcsec
am p.a.	-6.7deg	-8.3deg	-6.9deg	-7.4deg
al theoretical sensitivity	1.1 mJy/beam	1.4 mJy/beam	1.8 mJy/beam	1.2 mJy/beam
eaning threshold	3.4 mJy/beam Dirty DR: 47 DR correction: 1.5	4.2 mJy/beam Dirty DR: 36 DR correction: 1.5	5.5 mJy/beam Dirty DR: 29 DR correction: 1.5	3.6 mJy/beam Dirty DR: 44 DR correction: 1.5
lean residual peak / scaled MAD	-5.13	4.80	4.22	4.15
on-pbcor image RMS	1.9 mJy/beam	2.3 mJy/beam	2.5 mJy/beam	2 mJy/beam
cor image max / min	53.7 / -19.9 mJy/beam	52.4 / -22 mJy/beam	53.9 / -28 mJy/beam	53.1 / -20.3 mJy/beam
ctional bandwidth / nterms	0.28% / 1	0.27% / 1	0.26% / 1	0.27% / 1
gregate bandwidth	1.66 GHz (LSRK)	1.46 GHz (LSRK)	0.465 GHz (LSRK)	1.85 GHz (LSRK)
ore	1.00	1.00	1.00	1.00
age file	uidA001_X1296_X671.s34_0.LkCa15_sci.s pw33.mfs.l.iter1.image	uidA001_X1296_X671.s34_0.LkCa15_sci.s pw35.mfs.l.iter1.image	uidA001_X1296_X671.s34_0.LkCa15_sci.s pw37.mfs.l.iter1.image	uidA001_X1296_X671.s34_0.LkCa15_sc pw39.mfs.l.iter1.image
	Pipeline QA Input Parameters			
	Tasks Execution Statistics			
	CASA logs for stage 9			
	View or download stage9/o	casapy.log (344.3 KB)		
*				


ALMA CUROPEAN ARC

Click for log at the bottom and can see the CASA call

 Power of the pipeline imaging is easy to access image 'quick look' using the WebLog

←) → 健 û	file.///	Lisers/dtafova/Documer	ts/Work/Opsala/Nordic	_ARC_node/Pipeline_tutorial/2018.1.01201.S/scie **	
		osers/utaroya/Documen	na, work, onsala/wordic		
🖌 🔒 Home By Topi	By Tas	k			Project Code
ks in execution order		2020-12-03 07:46:52		rastructure.casatools::imager::apparentSensitivi1	y() (assuming that MS weights have correct scale and units)
ifa_importdata	9	2020-12-03 07:46:53	INFO pipeline.inf	rastructure.casatools::imager::apparentSensitivit	y() RMS Point source sensitivity : 0.00150252
		2020-12-03 07:46:53	INFO pipeline.inf	rastructure.casatools::imager::apparentSensitivit	y() Relative to natural weighting : 1.04257
hif_mstransform		2020-12-03 07:46:53	INFO hif_makeimag	es::pipeline.infrastructure.casatools:: image	r.apparentsens() CASA tool call took 0.347672s
hifa_flagtargets		2020-12-03 07:46:53	INFO hif_makeimag	es::pipeline.hif.heuristics.imageparams_base::	apparentsens result for EB uidA002_Xd2b681_Xb99d_target Field 2 SPW 16
hifa_imageprecheck	0	hanRange 0~2047: 0.001	50252071427 Jy/beam		
		2020-12-03 07:46:53	INFO hif_makeimag	es::pipeline.hif.heuristics.imageparams_base::	Channel selection bandwidth heuristic (nbin or findcont; (spw BW / nchan_s
hif_makeimlist (mfs)		l BW) ** 0.5): Correct	ing sensitivity for EB	uidA002_Xd2b681_Xb99d_target Field RU_Lup SPW	16 by 1.13 from 0.0015 Jy/beam to 0.0017 Jy/beam
hif_findcont		2020-12-03 07:46:53	INFO hif_makeimag	es::pipeline.hif.heuristics.imageparams_base::	Effective BW heuristic: Correcting sensitivity for EB uidA002_Xd2b681_3
hif_uvcontfit		그렇게 여러 집에 집에 가져 가지? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		0.0017 Jy/beam to 0.00215 Jy/beam	
		2020-12-03 07:46:53	INFO hif_makeimag	es::pipeline.hif.heuristics.imageparams_base::	Final sensitivity estimate for Field RU_Lup, SPW 16 specmode mfs: 0.00111
hif_uvcontsub		y/beam			
hif_makeimages (mfs)		2020-12-03 07:46:53			te the dirty image
. hif_makeimlist (cont)		2020-12-03 07:46:53	INFO hif_makeimag	es::pipeline.hif.heuristics.imageparams_alma::	autobox heuristic: Representative baseline length is 30.3 meter
		2020-12-03 07:46:53			ting tclean(vis=['uidA002_Xd2b681_Xa1c2_target.ms', 'uidA002_Xd2b681_X
. hif_makeimages (cont)	0				15919GHz;230.488257325~230.517493165GHz;230.533484376~230.556921876GHz;230.5
2. hif_makeimlist (cube)					30.472163966~230.485652735GHz;230.488094141~230.517329981GHz;230.533382227~2
3. hif_makeimages (cube)					2,3,4,5,6,7,8,9,10', '0,1,2,3,4,5,6,7,8,9,10,11'], scan=['6,8,11,13,16', '7,'
. mi_makermages (cube)					<pre>pw16.mfs.I.iter0', imsize=[90, 90], cell=['0.85arcsec'], phasecenter='ICRS 1</pre>
. hifa_exportdata					<pre>ghtdensity=False, gridder='standard', chanchunks=-1, mosweight=False, usepoin</pre>
				그는 것은 이렇게 잘 많은 것이 가지도 않는 것이 같아. 그렇게 많은 것이 있는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다.	r=False, weighting='briggs', robust=0.5, npixels=0, niter=0, threshold='0.0m.
					old=5.0, lownoisethreshold=2.0, negativethreshold=0.0, minbeamfrac=0.1, grow.
			ne=True, minpercentcha	nge=1.0, fastnoise=False, savemodel='none', paral	lel=False)
		A REAL PROPERTY AND AND A REAL PROPERTY AND A			
		2020-12-03 07:46:53	INFO tclean::::		
		2020-12-03 07:46:53 2020-12-03 07:46:53	INFO tclean::::+	******	
		2020-12-03 07:46:53 2020-12-03 07:46:53 2020-12-03 07:46:53	INFO tclean::::+ INFO tclean::::+	###### Begin Task: tclean #####	
		2020-12-03 07:46:53 2020-12-03 07:46:53 2020-12-03 07:46:53 2020-12-03 07:46:53	INFO tclean::::+ INFO tclean::::+ INFO tclean::::	######################################	sala/Nordic_ARC_node/Pipeline_tutorial/2018.1.01201.5/science_goal.uidA00
		2020-12-03 07:46:53 2020-12-03 07:46:53 2020-12-03 07:46:53 2020-12-03 07:46:53 X133d_X2c85/group.uid_	INFO tclean::::+ INFO tclean::::+ INFO tclean:::: _A001_X133d_X2c86/mem	######################################	A002_Xd2b681_Xalc2_target.ms', '/Users/dtafoya/Documents/Work/Onsala/Nord
		2020-12-03 07:46:53 2020-12-03 07:46:53 2020-12-03 07:46:53 2020-12-03 07:46:53 X133d_X2c85/group.uid_ _ARC_node/Pipeline_tut	INF0 tclean::::+ INF0 tclean::::+ INF0 tclean:::: _A001_X133d_X2c86/mem orial/2018.1.01201.5/s	######################################	A002_Xd2b681_Xalc2_target.ms', '/Users/dtafoya/Documents/Work/Onsala/Nord: 01_X133d_X2c86/member.uidA001_X133d_X2c8b/calibrated/working/uidA002_X
		2020-12-03 07:46:53 2020-12-03 07:46:53 2020-12-03 07:46:53 2020-12-03 07:46:53 X133d_X2c85/group.uid_ _ARC_node/Pipeline_tut b681_Xb99d_target.ms']	INFO tclean::::+ INFO tclean::::+ INFO tclean:::: _A001_X133d_X2c86/mem orial/2018.1.01201.S/s ,selectdata=True,field	<pre>####################################</pre>	
		2020-12-03 07:46:53 2020-12-03 07:46:53 2020-12-03 07:46:53 2020-12-03 07:46:53 X133d_X2c85/group.uid_ _ARC_node/Pipeline_tut b681_Xb99d_target.ms'] 0.5569218766Hz;230.559	INFO tclean::::+ INFO tclean::::+ INFO tclean:::: A001_X133d_X2c86/mem orial/2018.1.01201.S/s ,selectdata=True,field 485352~230.574622071GH	<pre>####################################</pre>	
		2020-12-03 07:46:53 2020-12-03 07:46:53 2020-12-03 07:46:53 2020-12-03 07:46:53 X133d_X2c85/group.uid_ _ARC_node/Pipeline_tut b681_Xb99d_target.ms'] 0.556921876GHz;230.559 1GHz;230.533382227~230	INF0 tclean::::+ INF0 tclean::::+ INF0 tclean:::: A001_X133d_X2c86/mem orial/2018.1.01201.5/s ,selectdata=True,field 485352~230.574622071GH .556758692GHz;230.5593	<pre>####################################</pre>	
		2020-12-03 07:46:53 2020-12-03 07:46:53 2020-12-03 07:46:53 2020-12-03 07:46:53 X133d_X2c85/group.uid_ _ARC_node/Pipeline_tut b681_Xb99d_target.ms'] 0.556921876GHz;230.559 1GHz;230.533382227~230 2020-12-03 07:46:53	INF0 tclean::::+ INF0 tclean:::: _A001_X133d_X2c86/mem orial/2018.1.01201.5/s ,selectdata=True,field 485352~230.574622071GH .556758692GHz;230.5593 INF0 tclean:::+	<pre>####################################</pre>	
		2020-12-03 07:46:53 2020-12-03 07:46:53 2020-12-03 07:46:53 2020-12-03 07:46:53 X133d_X2c85/group.uid_ _ARC_node/Pipeline_tut b681_Xb99d_target.ms'] 0.556921876GHz;230.559 1GHz;230.533382227~230 2020-12-03 07:46:53 n="",intent="0BSERVE_T	<pre>INF0 tclean::::+ INF0 tclean:::: _A001_X133d_X2c86/mem orial/2018.1.01201.5/s ,selectdata=True,field 485352~230.574622071GH .556758692GHz;230.5593 INF0 tclean::::+ ARGET#0N_SOURCE",</pre>	<pre>####################################</pre>	
		2020-12-03 07:46:53 2020-12-03 07:46:53 2020-12-03 07:46:53 2020-12-03 07:46:53 X133d_X2c85/group.uid_ _ARC_node/Pipeline_tut b681_Xb99d_target.ms'] 0.556921876GHz;230.559 1GHz;230.533382227~230 2020-12-03 07:46:53 n="",intent="0BSERVE_T 2020-12-03 07:46:53	<pre>INF0 tclean::::+ INF0 tclean::::+ INF0 tclean:::: _A001_X133d_X2c86/mem orial/2018.1.01201.S/s ,selectdata=True,field 485352~230.574622071GH .556758692GHz;230.5593 INF0 tclean::::+ ARGET#ON_SOURCE", INF0 tclean::::+</pre>	<pre>####################################</pre>	
		2020-12-03 07:46:53 2020-12-03 07:46:53 2020-12-03 07:46:53 2020-12-03 07:46:53 X133d_X2c85/group.uid_ _ARC_node/Pipeline_tut b681_Xb99d_target.ms'] 0.556921876GHz;230.559 1GHz;230.533382227~230 2020-12-03 07:46:53 n="",intent="0BSERVE_T 2020-12-03 07:46:53 ter="ICRS 15:56:42.294	<pre>INF0 tclean::::+ INF0 tclean::::+ INF0 tclean:::: _A001_X133d_X2c86/mem orial/2018.1.01201.5/s ,selectdata=True,field 485352~230.574622071GH .556758692GHz;230.5593 INF0 tclean::::+ ARGET#ON_SOURCE", INF0 tclean::::+ 2 -037.49.15.995",</pre>	<pre>####################################</pre>	
		2020-12-03 07:46:53 2020-12-03 07:46:53 2020-12-03 07:46:53 2020-12-03 07:46:53 X133d_X2c85/group.uid_ _ARC_node/Pipeline_tut b681_Xb99d_target.ms'] 0.556921876GHz;230.559 1GHz;230.533382227~230 2020-12-03 07:46:53 n="",intent="OBSERVE_T 2020-12-03 07:46:53 ter="ICRS 15:56:42.294 2020-12-03 07:46:53	<pre>INF0 tclean::::+ INF0 tclean::::+ INF0 tclean:::: _A001_X133d_X2c86/mem orial/2018.1.01201.5/s ,selectdata=True,field 485352~230.574622071GH .556758692GHz;230.5593 INF0 tclean::::+ ARGET#ON_SOURCE", INF0 tclean::::+ 2 -037.49.15.995", INF0 tclean::::+</pre>	<pre>####################################</pre>	
		2020-12-03 07:46:53 2020-12-03 07:46:53 2020-12-03 07:46:53 2020-12-03 07:46:53 X133d_X2c85/group.uid_ _ARC_node/Pipeline_tut b681_Xb99d_target.ms'] 0.556921876GHz;230.559 1GHz;230.533382227~230 2020-12-03 07:46:53 n="",intent="0BSERVE_T 2020-12-03 07:46:53 ter="ICRS 15:56:42.294	<pre>INF0 tclean::::+ INF0 tclean::::+ INF0 tclean:::: _A001_X133d_X2c86/mem orial/2018.1.01201.5/s ,selectdata=True,field 485352~230.574622071GH .556758692GHz;230.5593 INF0 tclean::::+ ARGET#ON_SOURCE", INF0 tclean::::+ 2 -037.49.15.995",</pre>	<pre>####################################</pre>	
		2020-12-03 07:46:53 2020-12-03 07:46:53 2020-12-03 07:46:53 2020-12-03 07:46:53 X133d_X2c85/group.uid_ _ARC_node/Pipeline_tut b681_Xb99d_target.ms'] 0.556921876GHz;230.559 1GHz;230.533382227~230 2020-12-03 07:46:53 n="",intent="OBSERVE_T 2020-12-03 07:46:53 ter="ICRS 15:56:42.294 2020-12-03 07:46:53	<pre>INF0 tclean::::+ INF0 tclean::::+ INF0 tclean:::: _A001_X133d_X2c86/mem orial/2018.1.01201.5/s ,selectdata=True,field 485352~230.574622071GH .556758692GHz;230.5593 INF0 tclean::::+ ARGET#ON_SOURCE", INF0 tclean::::+ 2 -037.49.15.995", INF0 tclean::::+</pre>	<pre>####################################</pre>	
		2020-12-03 07:46:53 2020-12-03 07:46:53 2020-12-03 07:46:53 2020-12-03 07:46:53 X133d_X2c85/group.uid_ _ARC_node/Pipeline_tut b681_Xb99d_target.ms'] 0.556921876GHz;230.559 1GHz;230.533382227~230 2020-12-03 07:46:53 n="",intent="0BSERVE_T 2020-12-03 07:46:53 ter="ICRS 15:56:42.294 2020-12-03 07:46:53 2020-12-03 07:46:53	<pre>INF0 tclean::::+ INF0 tclean::::+ INF0 tclean:::: _A001_X133d_X2c86/mem orial/2018.1.01201.S/s ,selectdata=True,field 485352~230.574622071GH .556758692GHz;230.5593 INF0 tclean::::+ ARGET#ON_SOURCE", INF0 tclean::::+ 2 -037.49.15.995", INF0 tclean::::+ INF0 tclean::::+</pre>	<pre>####################################</pre>	
		2020-12-03 07:46:53 2020-12-03 07:46:53 2020-12-03 07:46:53 2020-12-03 07:46:53 X133d_X2c85/group.uid_ _ARC_node/Pipeline_tut b681_Xb99d_target.ms'] 0.556921876GHz;230.559 1GHz;230.533382227~230 2020-12-03 07:46:53 n="",intent="0BSERVE_T 2020-12-03 07:46:53 ter="ICRS 15:56:42.294 2020-12-03 07:46:53 2020-12-03 07:46:53 2020-12-03 07:46:53	<pre>INF0 tclean::::+ INF0 tclean::::+ INF0 tclean:::: _A001_X133d_X2c86/mem orial/2018.1.01201.S/s ,selectdata=True,field 485352~230.574622071GH .556758692GHz;230.5593 INF0 tclean::::+ ARGET#ON_SOURCE", INF0 tclean::::+ INF0 tclean::::+ INF0 tclean::::+ INF0 tclean::::+</pre>	<pre>####################################</pre>	

 Power of the pipeline imaging is easy to access image 'quick look' using the WebLog

• The inset in the PSF image (when present) corresponds to the central 41 pixels of the PSF. When the beam shape is significantly non-Gaussian, the dotted contour of the 50% level of the PSF image will become distinctly visible apart from the fitted synthesized beam, which is shown as the solid contour

NOTE: slight changes in viewing pages per Cycle (new PL features added)

Pipeline imaged data

- "Context" concepts:
 - The context is a trace of a given job and can sometimes be restored, depending on what actions occurred.
 - Can only start from the last action saved, everything else is lost. WebLog renders can get confused
 - If you ran many stages and something crashed then:
 - restart with a resume, but first you should probably delete everything since the last save (cumbersome/error prone) - if you don't delete products will be similarly named and the PL run becomes confused - context does not know they exist
 - restart again, in a clean directory safer but can be more time consuming

Questions so far?

• Some analysis can be done in the CARTA

This afternoon CARTA session !!

	imhead — summarize and manipulate the "header" information in a CASA image Image Information
	 imsubimage — Create a (sub)image from a region of the image
	 imcontsub — perform continuum subtraction on a spectral-line image cube
Image	imfit — image plane Gaussian component fitting
Manipulation	 immath — perform mathematical operations on or between images
	 immoments — compute the moments of an image cube
	 impv — generate a position-velocity diagram along a slit
	imstat — calculate statistics on an image or part of an image
	 imval — extract the data and mask values from a pixel or region of an image
	• imtrans – reorder the axes of an image or cube
Image	 imcollapse — collapse image along one or more axes by aggregating pixel values along that axis
Reformatting	 imregrid — regrid an image onto the coordinate system of another image
Ŭ	 imreframe — change the frame in which the image reports its spectral values
	• imrebin — rebin an image
	 specsmooth — 1-dimensional smooth images in the spectral and angular directions
	 imsmooth — 2-dimensional smooth images in the spectral and angular directions
	• specfit — fit 1-dimensional Gaussians, polynomial, and/or Lorentzians models to an image or image region
	• specflux — Report details of an image spectrum.
	 plotprofilemap — Plot spectra at their position
Spectral line	 rmfit — Calculation of rotation measures
related	 spxfit — Calculation of Spectral Indices and higher order polynomials
	makemask — image mask handling
	 slsearch — query a subset of the Splatalogue spectral line catalog
	 splattotable — convert a file exported from Splatalogue to a CASA table
	importfits — import a FITS image into a CASA image format table
	exportfits – write out an image in FITS format

EUROPEAN ARC ALMA Regional Centre

• **imval**(imagename, region=", box=", chans=", stokes=")

• **imstat**(imagename, region=", box=" chans=", stokes=")

box = '512,512' - one pixel box = 'blcX, blcY, trcX, trcY' - box region

region = 'circle[[512pix, 512pix], 50pix]' region = 'circle[[04h35m28.15s, +22d32m14.24s], 1.5arcsec'

• **immath**(imagename='name', expr='IMO^2', outfile='')

will square all data in image 0

• immath(imagename=['name1', 'name2'], expr='IMO-IM1', outfile='')

will subtract image 0 from image 1 (of input list)

EUROPEAN ARC ALMA Regional Centre

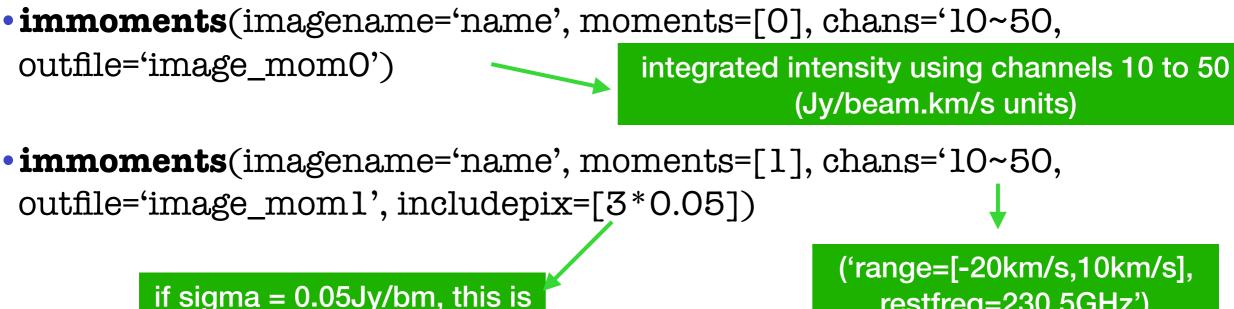
• myfit = **imfit**(imagename, region=", chans=", stokes=")

• **imsubimage**(imagename, outfile='', chans='5~10', region='', box='')

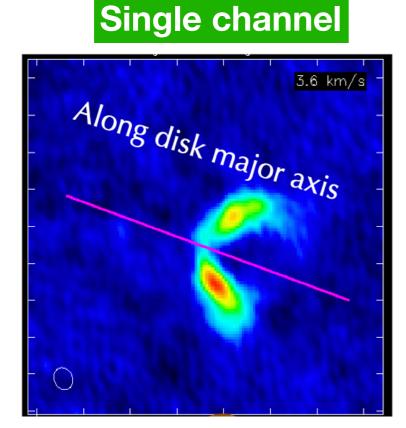
• immoments (imagename='name', moments=[0], chans='10~50, outfile='image_momO')

> if sigma = 0.05Jy/bm, this is >3sigma

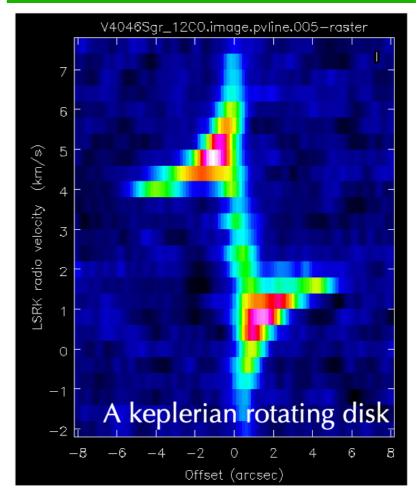
restfreq=230.5GHz')


takes channels 5 to 10 out of a

cube



EUROPEAN ARC ALMA Regional Centre



• **impv**(imagename, outfile='source_line_PV.image', chans='', mode='length', center=['18h14m10.5s, ______ pix units also '-32d47m35.27s'],length='15arcsec', pa='70deg')

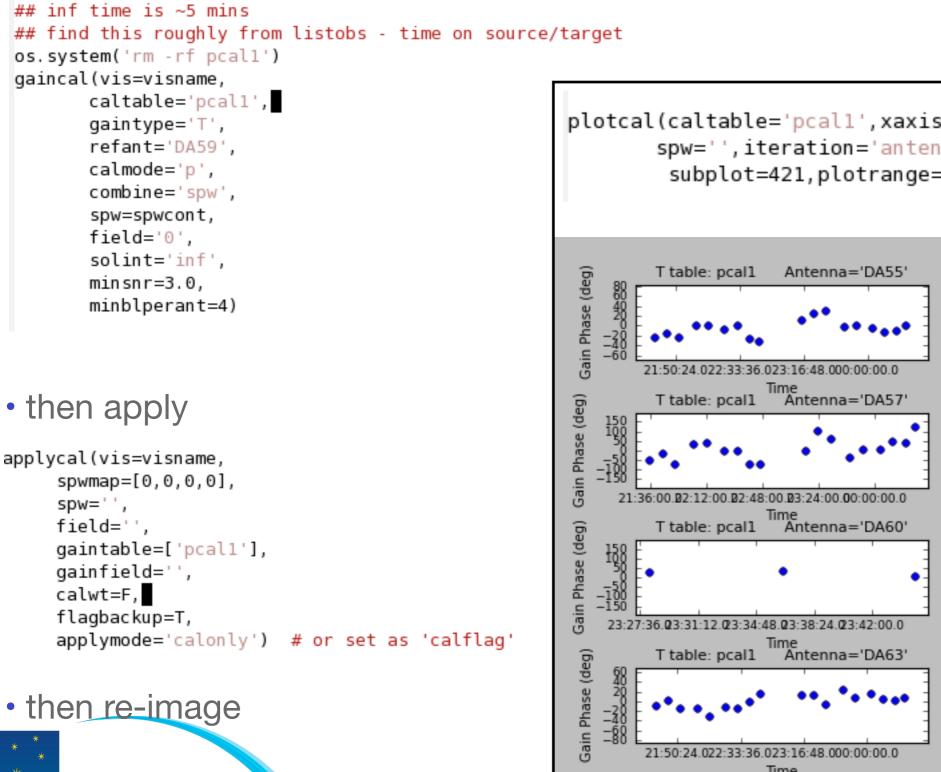
PV image - rotating disk

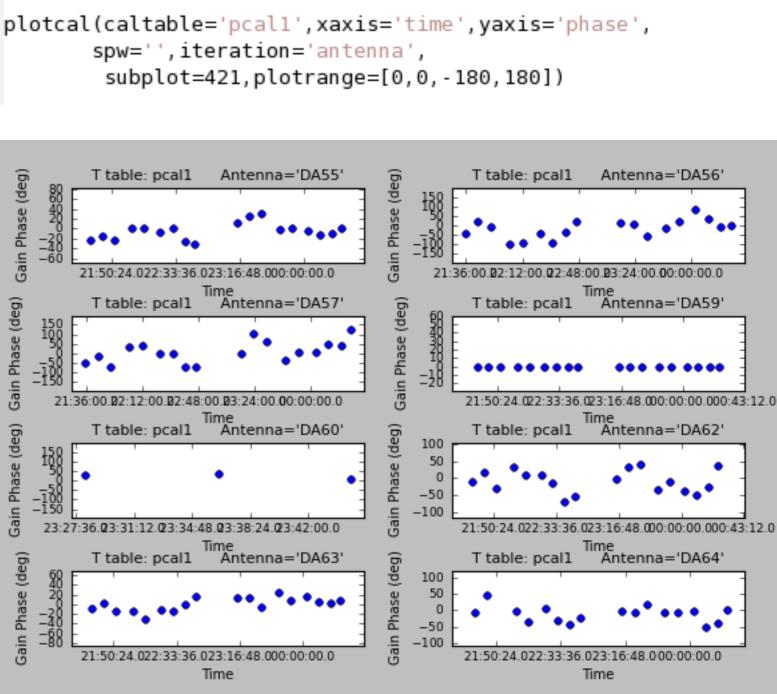
EUROPEAN ARC ALMA Regional Centre

 Interferometry uses phase referencing calibration - transfers solutions from a phase calibrator in position and time

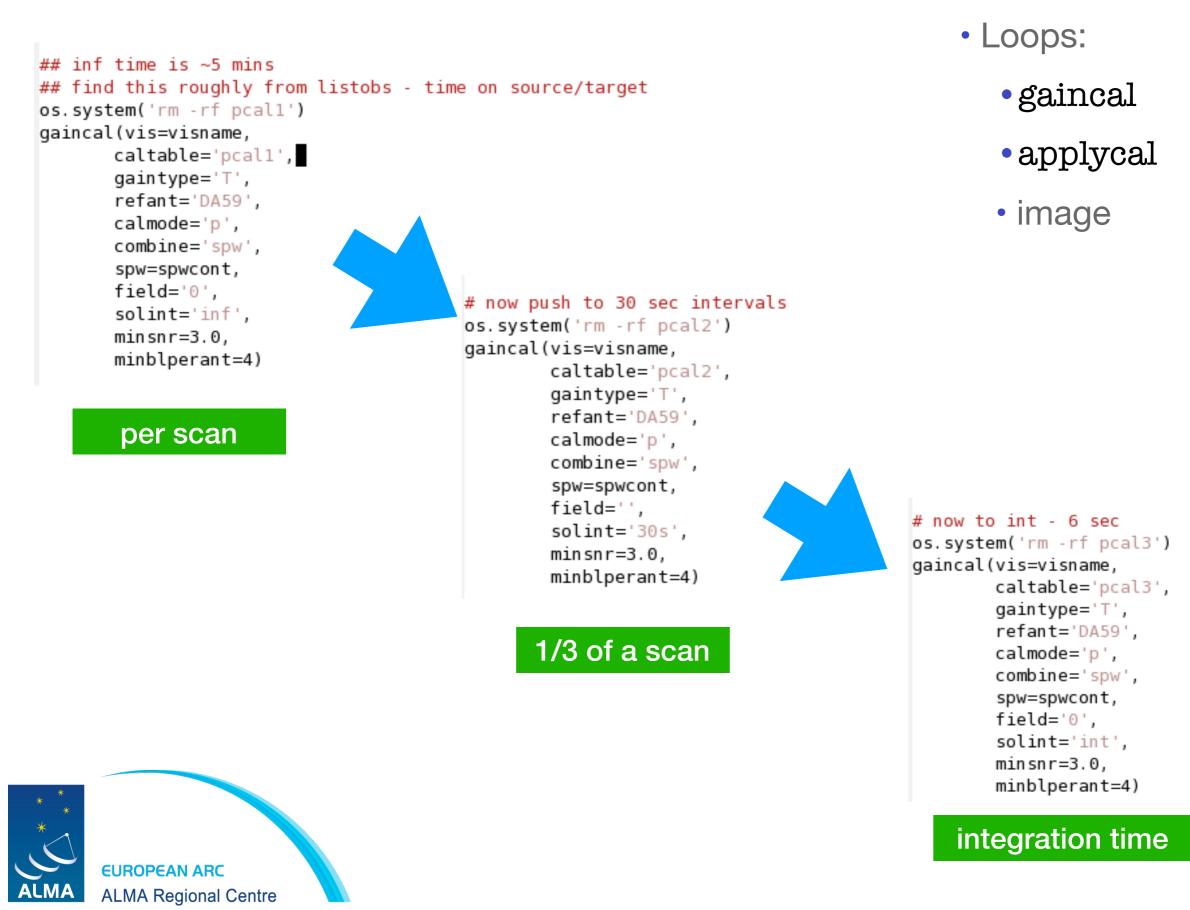
Inexact

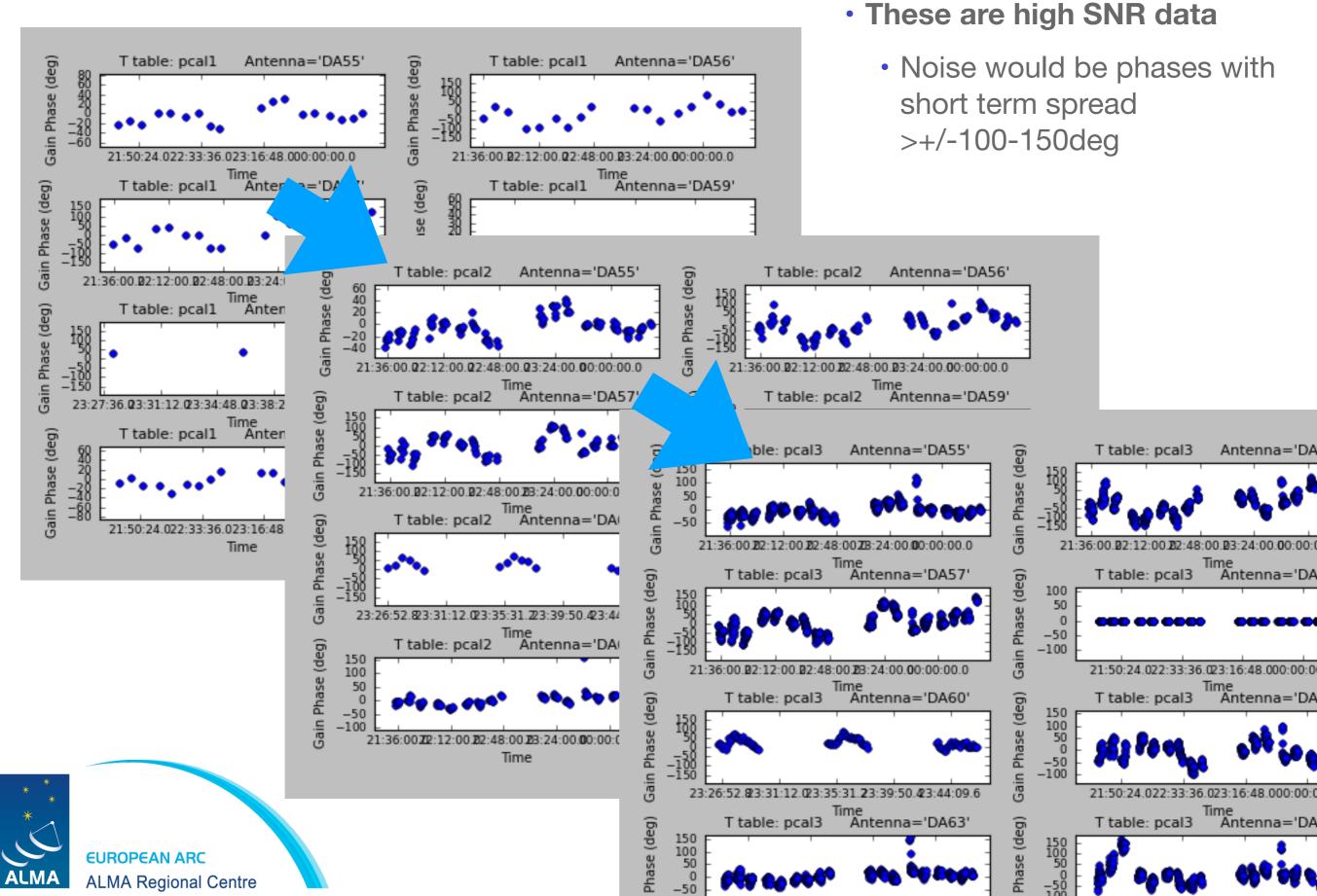
- If the data has enough SNR, and the image is 'good' then the clean model of 'real' sources can be used to 'self-calibrate' the data
 - The phases vary due to the atmosphere and the only way to correct for the duration of the observation on the target is with self-calibration
 - Short term faster than the repetition of phase calibrator visits
 - Phase offset can also be solved with longer term solutions imparted due to distant calibrator - longer term (10s minute timescales)
 - Imaging needs to have saved the source model, self-calibration usually iterates from longer to short times if images improve. Worse conditions and bright source will show the most improvement

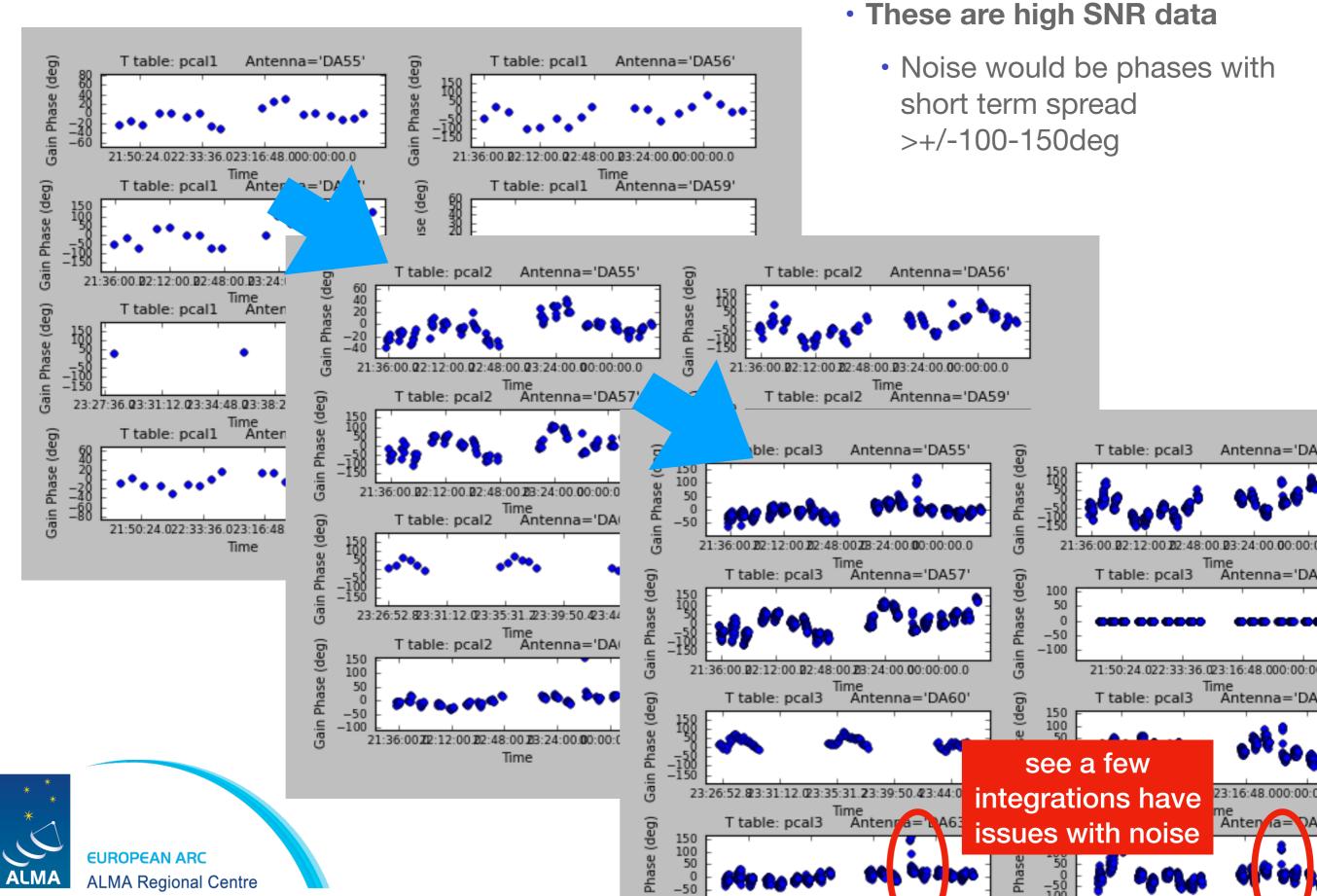

EXTRA READING: https://ui.adsabs.harvard.edu/abs/2022arXiv220705591R/abstract https://ui.adsabs.harvard.edu/abs/2018arXiv180505266B/abstract

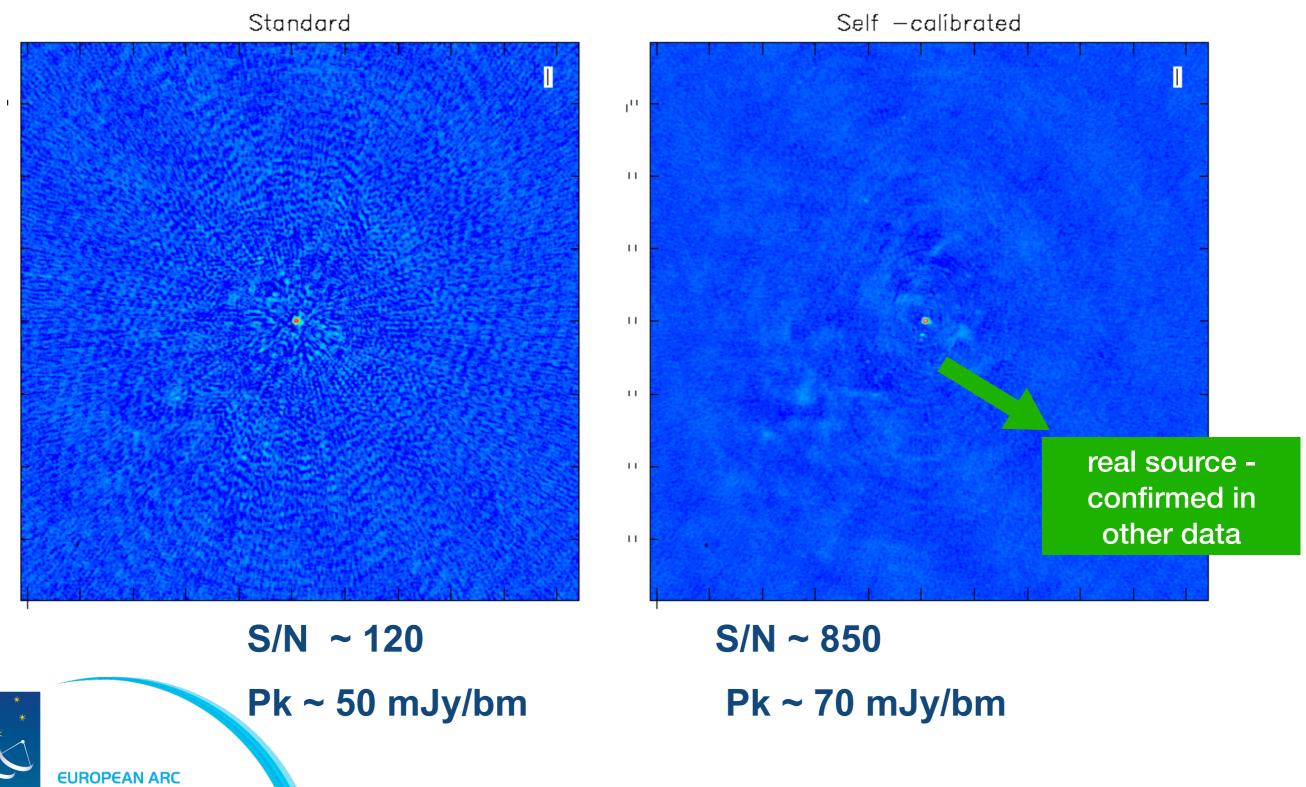

EUROPEAN ARC ALMA Regional Centre

- Typically use the "strong" continuum
 - in gaincal selection of only the continuum SPWs and channels:
 - spw = '5:0~10;50~490;'7:20~200;350~1023' -like the selection for imaging (manually)
- Can use very strong lines, i.e. maser emission
 - make sure an image has been made for these channels only (and a model saved)
 - in gaincal selection of only the **maser** SPW and channels
- In gaincal, start with a per SPW, and timescale 'inf', then apply, then image
 - can combine SPWs for SNR they should have been aligned by the standard calibration process
 - if the image improves, and solutions look to track the atmospheric phase variations, try with shorter interval. Lowest is 'int' integration time
 - if the phase solutions look like noise you don't have enough SNR




EXTRA READING: <u>https://ui.adsabs.harvard.edu/abs/2022arXiv220705591R/abstract</u> <u>https://ui.adsabs.harvard.edu/abs/2018arXiv180505266B/abstract</u>





EUROPEAN ARC ALMA Regional Centre

ALMA Regional Centre

ALMA

Final Questions?

