eso1732 — Науковий реліз

ALMA and Rosetta Detect Freon-40 in Space

Dashing Hopes that Molecule May be Marker of Life

2 жовтня 2017 р.

Observations made with the Atacama Large Millimeter/submillimeter Array (ALMA) and ESA’s Rosetta mission, have revealed the presence of the organohalogen Freon-40 in gas around both an infant star and a comet. Organohalogens are formed by organic processes on Earth, but this is the first ever detection of them in interstellar space. This discovery suggests that organohalogens may not be as good markers of life as had been hoped, but that they may be significant components of the material from which planets form. This result, which appears in the journal Nature Astronomy, underscores the challenge of finding molecules that could indicate the presence of life beyond Earth.

Using data captured by ALMA in Chile and from the ROSINA instrument on ESA’s Rosetta mission, a team of astronomers has found faint traces of the chemical compound Freon-40 (CH3Cl), also known as methyl chloride and chloromethane, around both the infant star system IRAS 16293-2422 [1], about 400 light-years away, and the famous comet 67P/Churyumov-Gerasimenko (67P/C-G) in our own Solar System. The new ALMA observation is the first detection ever of a stable organohalogen in interstellar space [2].

Organohalogens consist of halogens, such as chlorine and fluorine, bonded with carbon and sometimes other elements. On Earth, these compounds are created by some biological processes — in organisms ranging from humans to fungi —  as well as by industrial processes such as the production of dyes and medical drugs [3].

This new discovery of one of these compounds, Freon-40, in places that must predate the origin of life, can be seen as a disappointment, as earlier research had suggested that these molecules could indicate the presence of life.

Finding the organohalogen Freon-40 near these young, Sun-like stars was surprising,” said Edith Fayolle, a researcher with the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts in the USA, and lead author of the new paper. “We simply didn't predict its formation and were surprised to find it in such significant concentrations. It’s clear now that these molecules form readily in stellar nurseries, providing insights into the chemical evolution of planetary systems, including our own.”

Exoplanet research has gone beyond the point of finding planets — more than 3000 exoplanets are now known — to looking for chemical markers that might indicate the potential presence of life. A vital step is determining which molecules could indicate life, but establishing reliable markers remains a tricky process.

ALMA’s discovery of organohalogens in the interstellar medium also tells us something about the starting conditions for organic chemistry on planets. Such chemistry is an important step toward the origins of life,” adds Karin Öberg, a co-author on the study. “Based on our discovery, organohalogens are likely to be a constituent of the so-called ‘primordial soup’, both on the young Earth and on nascent rocky exoplanets.”

This suggests that astronomers may have had things around the wrong way; rather than indicating the presence of existing life, organohalogens may be an important element in the little-understood chemistry involved in the origin of life.

Co-author Jes Jørgensen from the Niels Bohr Institute at University of Copenhagen adds: "This result shows the power of ALMA to detect molecules of astrobiological interest toward young stars on scales where planets may be forming. Using ALMA we have previously found precursors to sugars and amino acids around different stars. The additional discovery of Freon-40 around Comet 67P/C-G strengthens the links between the pre-biological chemistry of distant protostars and our own Solar System."

The astronomers also compared the relative amounts of Freon-40 that contain different isotopes of chlorine in the infant star system and the comet — and found similar abundances. This supports the idea that a young planetary system can inherit the chemical composition of its parent star-forming cloud and opens up the possibility that organohalogens could arrive on planets in young systems during planet formation or via comet impacts.

Our results shows that we still have more to learn about the formation of organohalogens,” concludes Fayolle. “Additional searches for organohalogens around other protostars and comets need to be undertaken to help find the answer.”


[1] This protostar is a binary star system surrounded by a molecular cloud in the Rho Ophiuchi star-forming region, which makes it an excellent target for ALMA’s millimetre/submillimetre view.

[2] The data used were from the ALMA Protostellar Interferometric Line Survey (PILS). The aim of this survey is to chart the chemical complexity of IRAS 16293-2422 by imaging the full wavelength range covered by ALMA in the 0.8-millimetre atmospheric window on very small scales, equivalent to the size of the Solar System.

The species CF+, which could be considered as an organohalogen, had already been detected, but is not stable.

[3] Freons were widely used as a refrigerants (hence the name) but are now banned as they have a destructive effect on the Earth’s protective ozone layer.


This research was presented in a paper “Protostellar and Cometary Detections of Organohalogens” by E. Fayolle et al., to appear in Nature Astronomy on 2 October 2017.

The team is composed of Edith C. Fayolle (Harvard-Smithsonian Center for Astrophysics, USA), Karin I. Öberg (Harvard-Smithsonian Center for Astrophysics, USA),  Jes K. Jørgensen (University of Copenhagen, Denmark), Kathrin Altwegg (University of Bern, Switzerland),  Hannah Calcutt (University of Copenhagen, Denmark), Holger S. P. Müller (Universität zu Köln, Germany), Martin Rubin (University of Bern, Switzerland), Matthijs H. D. van der Wiel (The Netherlands Institute for Radio Astronomy, The Netherlands), Per Bjerkeli (Onsala Space Observatory, Sweden), Tyler L. Bourke (SKA Organisation, UK), Audrey Coutens (University College London, UK), Ewine F. van Dishoeck (Leiden University, The Netherlands; Max-Planck-Institut für extraterrestrische Physik, Germany), Maria N. Drozdovskaya (University of Bern, Switzerland), Robin T. Garrod (University of Virginia, USA), Niels F. W. Ligterink (Leiden University, The Netherlands), Magnus V. Persson (Onsala Space Observatory, Sweden), Susanne F. Wampfler (University of Bern, Switzerland) and the ROSINA team.

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of ESO, the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).

ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its world-leading Very Large Telescope Interferometer as well as two survey telescopes, VISTA working in the infrared and the visible-light VLT Survey Telescope. ESO is also a major partner in two facilities on Chajnantor, APEX and ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre Extremely Large Telescope, the ELT, which will become “the world’s biggest eye on the sky”.



Edith Fayolle
Harvard-Smithsonian Center for Astrophysics
Cambridge, Massachusetts, USA

Jes K. Jørgensen
Niels Bohr Institute, University of Copenhagen
Copenhagen, Denmark
Телефон: +45 4250 9970

Ewine van Dishoeck
Leiden Observatory
Leiden, Netherlands
Телефон: +31 71 5275814

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Телефон: +49 89 3200 6655
Стільниковий: +49 151 1537 3591

Connect with ESO on social media

Про реліз

Реліз №:eso1732
Назва:67P/Churyumov-Gerasimenko, IRAS 16293-2422
Тип:Solar System : Interplanetary Body : Comet
Milky Way : Star
Facility:Atacama Large Millimeter/submillimeter Array
Science data:2017NatAs...1..703F


ALMA and Rosetta Detect Freon-40 in Space
ALMA and Rosetta Detect Freon-40 in Space
ROSINA on Rosetta finds Freon-40 at Comet 67P/Churyumov–Gerasimenko
ROSINA on Rosetta finds Freon-40 at Comet 67P/Churyumov–Gerasimenko
IRAS 16293-2422 in the constellation of Ophiuchus
IRAS 16293-2422 in the constellation of Ophiuchus
The Rho Ophiuchi star formation region in the constellation of Ophiuchus
The Rho Ophiuchi star formation region in the constellation of Ophiuchus
ALMA and Rosetta Detect Freon-40 in Space
ALMA and Rosetta Detect Freon-40 in Space


ESOcast 131 Light: ALMA and Rosetta detect Freon-40 in Space (4K UHD)
ESOcast 131 Light: ALMA and Rosetta detect Freon-40 in Space (4K UHD)
Zooming in on the Rho Ophiuchi star formation region
Zooming in on the Rho Ophiuchi star formation region

Також дивіться наші