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Abstract. In this paper we present a non-interactive algorithm to estimate a representative value for the sky background on
CCD images. The method we have devised uses the mode as a robust estimator of the background brightness in sub-windows
distributed across the input frame. The presence of contaminating objects is detected through the study of the local intensity
distribution function and the perturbed areas are rejected using a statistical criterion which was derived from numerical simu-
lations. The technique has been extensively tested on a large number of images and it is suitable for fully automatic processing
of large data volumes. The implementation we discuss here has been optimized for the ESO-FORS1 instrument, but it can be
easily generalized to all CCD imagers with a sufficiently large field of view. The algorithm has been successfully used for the
UBVRI ESO-Paranal night sky brightness survey (Patat 2003).
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1. Introduction

The study of the night sky brightness is fundamental to monitor
the quality of very dark astronomical sites and sets the stage
for the study of a whole series of effects which take place in
the upper layers of Earth’s atmosphere (Leinert et al. 1998 and
references therein).

With the exception of a very few cases, all night sky bright-
ness surveys are executed with photoelectric devices coupled
to small telescopes and usually span a limited number of nights
(Benn & Ellison 1998), distributed across several years. For
these reasons, the data are usually rather scanty and suffer from
the inclusion of bright stars (V ≥ 13; see for example Walker
1988).

Nowadays, with the availability of large telescopes
equipped with CCD imagers and the possibility of reducing the
data via dedicated pipelines, the paradigm is changing and dif-
ferent approaches become feasible.

In this spirit, from the beginning of year 2000 we started
a project to monitor the UBVRI night sky brightness at ESO-
Paranal Observatory (Chile) as part of the quality control (QC)
procedures implemented for the FOcal Reducer/low dispersion
Spectrograph (hereafter FORS1). This multi-mode optical in-
strument, which is mounted at the Cassegrain focus of ESO-
Antu/Melipal 8.2-m telescopes (Szeifert 2002), has two re-
motely exchangeable collimators, which give an imaging field
of view of 6′.8 × 6′.8 (standard resolution, SR) and 3 ′.4 × 3′.4
(high resolution, HR) respectively.

� Partially based on observations collected at ESO-Paranal.
�� e-mail: fpatat@eso.org

FORS1 is offered during dark time both in Visitor Mode
(VM) and Service Mode (SM). Imaging data obtained during
SM runs are bias and flat-field corrected by the pipeline and
undergo a series of quality checks before they are finally dis-
tributed to the users. Due to the high number of imaging frames
produced by this instrument (more than 4500 from April 2000
to September 2001) and the variety of scientific cases which
drive it, it is clear that a complete and systematic study of the
night sky brightness can be performed only by means of a ro-
bust and automatic procedure, capable of identifying and re-
jecting all the cases which are not suitable for sky background
measurements (e.g. large galaxies, crowded stellar fields and
so on).

In this work we present and discuss the algorithm we have
specifically designed for this purpose, while the results of the
night sky brightness survey are reported in Patat (2003).

The paper is organized as follows. In Sect. 2 we discuss the
problems connected with the sky background measurement in
digital images, while Sect. 3 deals with the technique we have
adopted to compute the mode of the image intensity distribu-
tion. The algorithm we have devised to identify the presence
of contaminating objects in the field and the tests we have per-
formed on real FORS1 data are presented in Sects. 4 and 5
respectively. Finally, in Sect. 6 we summarize our conclusions.

2. Problems in estimating the sky background

Widely available programs for object detection and photome-
try like DAOPHOT (Stetson 1987) and Sextractor (Bertin &
Arnouts 1996) use the mode of the image intensity distribution
to estimate the local background or to construct the background
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map of a two-dimensional frame. In fact, besides its robustness,
the mode is a statistically powerful estimator, being the most
probable value of the background brightness in a given region
of the image.

The use of the mode as the maximum-likelihood estima-
tor for the sky background implicitly assumes that the image
has some regions which are not seriously contaminated by any
astronomical object. Of course distant and faint galaxies (and
stars) will always be present, but we will consider them as
part of the global background throughout this paper. Therefore,
when we talk about contaminating objects, we mean objects
which are detectable in the image, well above the background
noise. There is also another assumption that one has to make,
i.e. that it is really improbable that the images to be analysed
are filled by a single extended object with a roughly constant
surface brightness. In fact this is the only case where one would
have an overall background increase without having any sec-
ondary effects on the intensity distribution function and in that
case the process would lead to an overestimate of the sky back-
ground. In the case of FORS1 frames, especially with the com-
monly used SR collimator field of 6′.8 × 6′.8, this assumption
seems reasonable.

Due to the field of view of FORS1 and the wide variety
of scientific projects which are carried out by this multi-mode
instrument, one expects to deal with very different astronom-
ical objects, which would perturb in a different way the lo-
cal sky background. Possible examples are comets, clusters of
galaxies, outskirts of big spirals, large ellipticals, diffuse neb-
ulosities, crowded stellar fields and so on. In all these cases
there still might exist parts of the image which are suitable
for a sky background measurement. For this reason it is clear
that the analysis has to be performed using sub-windows dis-
tributed on a grid across the input image. The choice of the
sub-window size has to be done in such a way that this is nei-
ther too small, because in that case the fraction of uncontam-
inated pixels might become statistically insignificant, nor too
big, otherwise the probability of including large diffuse objects
becomes large. After running some tests we have seen that a
300× 300 px sub-window (which corresponds to 1 arcmin 2 for
the SR collimator) gives satisfactory results. Since the guide
probe of FORS1 is sometimes vignetting the outer parts of the
images, we have decided to use the central 1800 × 1800 px re-
gion of the detector only. This allows one to analyse the images
in a 6 × 6 sub-windows grid including 9 × 10 4 px each.

Of course there is always the possibility that none of the
sub-windows is clean enough to allow for a reliable measure-
ment. A few examples are galactic stellar fields with heavily
saturated stars, outer parts of globular clusters, nearby interact-
ing galaxies and close-by comets, just to cite a few real exam-
ples we encountered during this analysis.

The difficulties one faces in estimating the background are
easily understood from the following considerations. If the im-
ages to be analysed were noiseless and the sky background
constant and equal to Isky, the solution of the problem would
be trivial. In fact, in this case, the corresponding intensity dis-
tribution function F(I) would be 0 for I < I sky, would then sud-
denly peak at I = Isky and finally show an extended tail, whose
shape depends on the number and intensity of contaminating

Fig. 1. Illustration of the effect on the intensity distribution when a
Poissonian noise is added to a stellar field with a constant back-
ground Isky. The vertical scale in the lower plots is arbitrary, while
the intensity I is counted from the input Isky value and normalised to
σp =

√
Isky. The solid thin curve in the lower left plot depicts the

contribution to the final intensity distribution by the value of F(I) at
I = Isky + σp.

objects. This is illustrated in the left part of Fig. 1, where we
have presented an artificial stellar field and its intensity distri-
bution. As usual, Nature behaves in a more subtle way and due
to the photon statistics (and marginally to detector read-out) the
images we are going to deal with are always affected by noise.
From a mathematical point of view it is very easy to predict the
noise effect on the intensity distribution. In fact, if n(I) is the
noise distribution, the observed intensity distribution is simply
given by:

f (I) =
∫ I

−∞
F(I − z) n(I, z) dz (1)

i.e. the convolution F ⊗ n of the signal F(I) with a variable
response function n(I, z), which can be expressed as n(I, z) =
1/
√

2π z exp[− 1
2 (z2/(I − z)], provided that the read-out noise

is negligible. From these simple considerations it is clear that
what really matters for the degradation of the resulting peak
sharpness and the consequent uncertainty in the estimate of its
original position is the shape of the input distribution func-
tion F(I) within ∼5

√
Isky from its peak, while the behaviour

at higher intensities is unrelevant (see Fig. 1, right plots). With
respect to these effects, it is quite instructive to look at the re-
sults of some numerical simulations. In Fig. 2 we have plot-
ted the relative intensity distributions of three 300 × 300 px
artificial frames with a fixed value of the sky background
(Isky = 5000 electrons) on which we have randomly injected
10, 200 and 500 stars respectively. We have used a Moffat pro-
file for the stars with β = 4 and a FWHM of 5.3 px. In the case
of FORS1 and SR collimator this would correspond to a field
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Fig. 2. Intensity distributions for three simulated images obtained in-
jecting 10, 200 and 500 stars (from top to bottom) on a background
Isky = 5000 e− with a Poissonian noise distribution. The solid curves
are Gaussian profiles centred on the distribution mode and having the
σ expected for a Poissonian noise (see text for more details).

of 1 arcmin2 and a seeing of 1′′. The peak intensity of the stars
was randomly generated in the range 0–10 4 electrons.

Basically three effects are visible as the number of stars
grows: A) the mode 〈I〉 of the distribution steadily increases;
B) the distribution core width increases; C) the distribution
becomes more and more skewed, with a tail appearing at the
highest intensities. Clearly effects A and B will respectively
lead to overestimates of the sky background I sky and the noise,
which in the case of an uncontaminated field is expected to be
σp =

√
Isky, according to the Poissonian statistics. One possi-

ble solution to this problem is achieved by reconstructing the
intensity distribution one would have if no contamination ef-
fects were present. A good example of such a solution is rep-
resented by the asymmetric clipping algorithm developed by
Ratnatunga & Newell (1984), which computes the background
distribution via an iterative clipping of the right wing of the
perturbed intensity distribution.

Due to the high number of available FORS1 frames and
the purpose of this work, we can afford a different ap-
proach. Instead of attempting to reconstruct the underlying sky
background intensity distribution in contaminated regions, we
rather try to identify these regions and exclude them from all
further calculations. For this purpose we have devised a simple
and robust test that can be used to estimate the degree of con-
tamination in an image and operated in an automatic way on
large amounts of data.

The first step in the application of our method is the mode
estimate, which we describe in the next section.

3. Mode estimate

The mode 〈I〉 of a distribution f (I) is defined as the most proba-
ble value of I (see for example Lupton 1993) or, in other words,
the value of I where f (I) takes its maximum value. For moder-
ately skewed distributions the mode can be approximately com-
puted as 〈I〉 
 3×median− 2×mean (Kendall & Stuart 1997).
Unfortunately, the observed intensity distributions in FORS1
images often show very extended tails, due to several effects
like saturated stars, cosmic-ray events and so on. While this
tail usually does not affect the mode, it does perturb the mean
and the above formula would lead to wrong results. A possible
solution is given by the application of this approximation after
an iterative clipping of the distribution around its median, as
it is done for example in Sextractor (Bertin & Arnouts 1996).
In practice one is forced to use this method when one has to
compute the background map of an image using small sub-
windows. In fact in that case the statistics would be too poor
to compute the mode in a reliable way directly using the distri-
bution shape.

This is not the case here, since we are more interested in
an average value rather than in a map of the background within
the same image. For this reason we can perform our analysis in
much larger sub-windows so that we can build up a very good
signal-to-noise distribution function. This allows us to compute
the mode just using its definition, without any loss of generality
and in a very robust way.

3.1. Introducing the Optimal Binning Technique (OBT)

Since we are dealing with discrete distribution functions, find-
ing the mode implies that the data have to be binned and the
maximum of the distribution has to be found. To reduce the
noise due to the finite (and possibly large) bin size ∆I, we have
chosen to refine the direct mode estimate using a quadratic in-
terpolation on the modal bin and the two adjacent bins (see for
instance Spiegel 1988). If Im and fm = f (Im) are the values
of the intensity and intensity distribution in the modal bin and
(Ir, fr), (Il, fl) are the corresponding values in the two adjacent
bins respectively, then the mode 〈I〉 is estimated as the value of
I where the interpolating parabola reaches its maximum. One
can show that this is given by the following expression:

〈I〉 = Im +
fl − fr

fl − 2 fm + fr

∆I
2
· (2)

This correction has the effect of moving the estimated mode 〈I〉
within the whole bin ∆I according to the local shape of the dis-
tribution function. The modal bin boundaries are reached when
fm = fl or fm = fr (provided that fl � fr). Numerical simu-
lations have shown that the parabolic interpolation is very ef-
fective in reducing the error on the mode estimate (see below),
at least for the kind of distributions considered here. For more
general cases, the interpolation option will improve the mode
accuracy only if the asymmetry of the distribution around the
mode perturbs ( fl − fr) significantly less than the average value
of the correction corresponding to an offset of the central bin.

The choice of bin size is critical. If the bin ∆I is too
small the resulting histogram will be too noisy to give a robust
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Fig. 3. Upper panel: Signal-to-noise ratio S NRm reached in the modal
bin for the optimal value of ∆I as a function of npix. The solid line rep-
resents a linear fit to the data with npix ≥ 90. Middle panel: normalised
optimal bin width. The solid line traces Eq. (8). Lower panel: optimal
values of the RMS error on the mode. The dotted line is a best fit to the
data (εRMS ∝ n−0.75

pix ) while the dashed line traces the law εRMS ∝ n−1
pix.

In all panels each point is the result of 5000 simulations.

estimate of 〈I〉. On the other hand, if ∆I is too large, then the
mode estimate will be affected by a large uncertainty due to the
small signal-to-noise in the two outer bins. For this reason we
need to find an optimal value for ∆I which minimises the error
on the mode.

For this purpose we have run a series of numerical simu-
lations of uncontaminated windows with a known sky level on
top of which we have added a Poissonian noise and a typical
read-out noise (6 electrons). For each of the simulated frames
the mode was estimated using the parabolic interpolation de-
scribed above. This has been done for different values of the
bin size ∆I and the number of pixels N = n2

pix included in
each testing window. For each pair (∆I, npix) we have per-
formed 5000 simulations. What one sees is that for a given
value of npix, the RMS deviation of the estimated mode from
the known input value Isky decreases as ∆I increases, reaches
a minimum and then grows again, as expected from the above
considerations (see also Fig. 4). For this reason it makes sense
to adopt the value of ∆I where the RMS error εRMS reaches its
minimum as the optimum bin size for the mode estimate.

Before we proceed with the presentation of the results, we
want to discuss a few more points. The pixel counts in the in-
tensity distribution bins obey Poissonian statistics. This implies
that if f (I) is the number of pixels falling in a given bin, the
RMS uncertainty on f (I) is simply given by

√
f (I) and hence

we can define a signal-to-noise ratio S NR =
√

f (I). In

particular, we can introduce S NRm, i.e. the signal-to-noise ra-
tio reached in the modal bin. If f is the fraction of pixels falling
in the modal bin, we have obviously

f = (S NRm/npix)2. (3)

Having this in mind, we can now have a look at the behaviour
of S NRm as a function of npix when the optimal bin size is used
to estimate the mode in our simulations. This is portrayed in
the upper panel of Fig. 3, where one can easily see that S NR m

depends almost linearly on npix. In the range 90 ≤ npix ≤ 300,
the best fit to the simulated data (see Fig. 3, upper panel) gives

S NRm 
 6.2 + 0.48 npix. (4)

For large values of npix this relation can be approximated as
S NRm ≈ npix/2, which means that optimal results are obtained
when ∼25% of the pixels fall in the modal bin.

Having this result, it is easy to compute the optimal frac-
tion f of pixels by means of Eq. (3) and Eq. (4) (or its approx-
imate expression). Then, assuming the underlying distribution
f (I) to be a Gaussian with σ = σp, one can derive the corre-
sponding bin size in terms of σp as

∆I = 2 k( f ) σp (5)

where k is implicitly defined by the following equation:

f =
1√

2πσp

∫ 〈I〉+kσp

〈I〉−kσp

exp

− (I − 〈I〉)2

2σ2
p

 dI. (6)

This equation can be solved numerically and the solution fitted
by a low order polynomial. For f ≤ 0.33 (n pix > 60), the so-
lution can be approximated rather accurately by the following
expression:

k( f ) 
 1.28 f . (7)

Finally, using Eqs. (5) and (7) one can easily compute the op-
timal bin width. For npix ≥ 90 we can approximate the expres-
sion for the optimal bin as follows:

∆I
σp

 2.6

(
0.48 +

6.2
npix

)2

(8)

while, for very large values of npix, the ratio between the
optimal bin size ∆I and σp approaches asymptotically the
value 0.6. The result is shown in the central panel of Fig. 3,
where we have normalised the optimal bin to σp to remove the
dependency on the sky level. The comparison between the pre-
dicted values (solid line) and the results of the simulations are
in good agreement across all the npix explored range.

Finally, the RMS deviation from the input value in our
simulations clearly decreases for increasing values of npix, as
shown in the lower panel of Fig. 3. For comparison we have
overplotted the n−1

pix law (dashed line) expected if the error
would scale proportionally to the overall signal-to-noise ratio.
It is interesting to note that the RMS error in the simulations de-
creases at a slower rate, approximately as n−0.75

pix (dotted line).
We will come back to this point in the next section, when dis-
cussing the efficiency of the method in reducing the error; for
the time being, we only notice that with npix = 20 the expected
RMS error for Isky = 100 electrons is about 1%, which reduces
to 0.2% for npix = 300.
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3.2. Application of OBT to the real case

As we have discussed in Sect. 2, the real data show a vari-
ety of contaminating effects, which tend to skew the intensity
distribution and affect in different ways the mode estimate. In
that section we have also mentioned that the optimal window
size for the mode estimate is npix = 300. Both simulations and
tests with real data show that with such a number of pixels
we can achieve RMS errors on the mode smaller than 1% for
Isky ≥ 100 electrons, which we believe is a sufficient accuracy
for our purposes. For this reason, from now on we will con-
centrate on the specific case of npix = 300 and discuss several
aspects of the method application.

In the previous section we have seen that, for a sufficiently
large value of npix, the optimal bin size can be expressed as:

∆I = 2.6
S NR2

m

N

√
Isky. (9)

Of course this requires to know the value of I sky, or at least to
have a rough estimate of it. For this purpose, one can approx-
imate it with the median of the distribution Imed, and S NRm

can be computed using Eq. (4). For npix = 300 we have
S NRm 
 150.

Once this guess value for the bin is computed, the his-
togram of the intensity distribution between Imin and Imax is
built and the mode is found. Since in the case of skewed distri-
butions the median is only a rough approximation of the mode
and the distribution is definitely not Gaussian, the actual signal-
to-noise ratio S NR′m in the modal bin is measured and from this
value a new bin is recomputed as ∆I ′ = ∆I (S NRm/S NR′m)2.
The histogram is recalculated and a new mode value is esti-
mated. This procedure has a clear effect: if the distribution is
skewed (and hence less peaked), then a larger bin size is re-
quired to achieve the same S NRm.

The method has been tested using numerical simulations of
uncontaminated 300× 300 px windows with a known sky level
Isky on top of which we have added a Poissonian noise and a
typical read-out noise (6 electrons). For each simulated field,
we have then computed the mode 〈I〉 and the deviation from
the input sky background value defined as

ε =
〈I〉 − Isky

Isky
· (10)

In Fig. 4 we present the results we have obtained for a
very low sky background (100 electrons). The RMS devia-
tion εRMS (solid line) reaches its minimum value (0.2%) for
S NRm = 150, as expected, and so does the maximum error
εmax (dotted line). In the same figure we have also plotted the
RMS error one obtains without using the refinement given by
Eq. (2) (ε ′RMS, dashed line). This shows that the two methods
give optimal results at two different bin sizes. In such condi-
tions the interpolation reduces the RMS error by about a factor
of 6. For comparison we have also plotted the bin half width
(long-dashed line), which can be assumed as an estimator of
the maximum deviation when the parabolic interpolation is not
used.

On the basis of these results one would tend to adopt
S NRm = 150, but there is a caveat that we have to keep

Fig. 4. Estimated RMS mode errors (solid line) from simulated 300 ×
300 px un-contaminated windows as a function of S NRm. The maxi-
mum error is traced with a dotted line, while the dashed line indicates
the RMS error when the parabolic interpolation is not used. Finally,
the long-dashed line indicates the percentage bin half width. The val-
ues for each S NRm level are the result of 5000 simulations.

in mind. These results are valid for uncontaminated distribu-
tions, where the signal-to-noise ratio S NRm in the modal bin is
reached using the bin size given by Eq. (9). Since real distri-
butions are contaminated, a larger bin size is required in order
to achieve the same S NRm and this in turn generates larger er-
rors. The simulations and extensive tests with real data have
shown that a good compromise is reached using S NRm = 120
which, for mildly contaminated distributions gives maximum
errors smaller than 1% for a background level of 100 electrons
(see Table 1).

To see how the error behaves as a function of the sky back-
ground, we have performed another set of similar simulations,
where we have adopted S NRm = 120 and we have varied the
input sky level from 102 to 104 electrons. A total of 5000 sim-
ulations per level were executed. The results are presented in
Fig. 5 and summarized in Table 1.

In the upper panel of Fig. 5 we have plotted the percentage
errors ε as a function of the background level. As expected, the
percentage RMS error, traced with a solid line, decreases for
increasing values of 〈I〉, following very well the usual law for
the standard error of the average:

σ〈I〉 =

√
〈I〉
Neff

(11)

with the difference that Neff is smaller than the total number
N of pixels. For this reason, Neff can be considered as the ef-
fective number of data points drawn from the original set one
would have to use to get the same RMS error when adopting
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Table 1. Estimated errors from numerical simulations of 300×300 px uncontaminated windows for three different values of the sky background.
Maximum errors are indicated within parenthesis. A total of 5000 simulations per sky level and S NRm value were performed.

S NRm f (%) nb(±σ) ∆I/〈I〉(%) RMS error (%)

102 103 104 102 103 104

120 16.0 5 4.7 1.3 0.4 0.25 (1.00) 0.07 (0.27) 0.02 (0.11)
150 25.0 3 7.5 2.1 0.7 0.17 (0.60) 0.04 (0.16) 0.02 (0.06)

the average as background estimator1. As we have seen at the
end of Sect. 3.1, the RMS error scales as n−0.75

pix , and hence we

have Neff = N0.75 when the optimal S NRm is adopted. Since
we have chosen to use S NRm = 120, we expect Neff to be even
smaller. In fact, fitting Eq. (11) to the simulated data, we get
Neff ∼ 1970. Combining Eq. (9) and Eq. (11) one gets the fol-
lowing relation between the bin size ∆I and the expected RMS
error σ〈I〉 on the mode:

σ〈I〉 =
N√
Neff

∆I

2.6 S NR2
m
· (12)

Substituting the proper values in this expression, we obtain
simply σ〈I〉 
 0.05 ∆I, which means that for S NRm = 120
and moderately contaminated distributions, the expected RMS
error on the mode is of the order of 5% of the bin size. This
is clearly shown in the lower panel of Fig. 5, where we have
plotted the measured error as a function of the relative bin size
derived from the same set of simulations previously described.
The match between the expected RMS (dotted line) and the
observed RMS (dashed line) is fairly good.

In both panels of Fig. 5 we have plotted the maximum er-
rors encountered during the simulations. As one can see, they
are well confined within the 5σ level (dashed line), which was
computed using the RMS error given by the simulations. More
precisely, maximum errors lie with a good approximation on
the 4σ level. From Fig. 5 we can conclude that the expected
RMS errors on the mode estimate are below 0.3% at all sky
background levels larger than 100 electrons, while maximum
errors are always smaller than 1%.

The introduction of artificial stars has the effect of system-
atically increasing the mode of the distribution with respect to
the real value of the sky background (see Sect. 2). For this rea-
son, in the general case of contaminated distributions, we can
talk about two different errors. While the former is a random
measurement error intrinsic to the adopted method and to the
quality of the data, the latter is a systematic error which de-
pends on the intensity distribution of the contaminating objects.
As we have said in Sect. 2, we want to use only the cases where
the systematic error is smaller than some threshold value. The
approach to this problem is described in Sect. 4, while here we
focus only on the random errors related to the way the mode is
estimated.

To evaluate the effect of contamination on the method er-
ror, we have performed several sets of simulations injecting a
fixed number of stars N∗ with random positions on a sky back-
ground of intensity Isky. The stars intensities I∗ were uniformly

1 Of course this is true only if the distribution is not contaminated,
because otherwise the average gives much larger systematic errors.

generated in the range 0 < I∗ ≤ (Isat − Isky), where Isat is the de-
tector’s numerical saturation level (Isat ∼ 106 000 electrons for
the FORS1 detector, high gain). Finally, a Poissonian noise was
added to the artificial 300× 300 px frames to simulate the pho-
ton shot noise and the mode was measured with the OBT using
S NRm = 120. Numerical tests using a more realistic intensity
distribution, drawn from observed star counts, show that very
similar contamination effects are achieved. The only difference
is that one needs to generate much more artificial stars in the
non-uniform case, and this makes it numerically less efficient.

As expected, the simulations show that the systematic er-
ror grows with N∗, while the random error keeps obeying to
Eq. (12) with a good approximation, at least for N ∗ < 200 and
〈I〉 ≥ 500 electrons. More precisely, in the case of N∗ = 200,
the simulations give σ〈I〉 
 0.08 ∆I in the range 102 ≤ 〈I〉 ≤
104 electrons. We can safely conclude that the RMS errors in-
troduced by the mode determination method we have described
in this section are smaller than 0.3% for 〈I〉 ≥ 5×102–104 elec-
trons. Finally, the RMS error can be conservatively assumed to
be 8% of the bin size ∆I in the same intensity range, which
corresponds to Neff ∼ 1000. These values have been used in
the remaining sections of this work and for all sky brightness
measurements discussed in Patat (2003).

4. The ∆-test

Once the mode 〈I〉 of the sky background distribution and
the corresponding error σ〈I〉 have been computed, one is left
with the task of recognizing and rejecting contaminated sub-
windows, which is the topic of this section.

As we have already mentioned, in an uncontaminated im-
age the intensity distribution f (I) obeys the photon shot noise
distribution and hence the expected RMS noise is given by
σp =

√〈I〉. Since the left wing of f (I) is much less disturbed
than the right wing (cf. Fig. 2), we can estimate the underlying
background noise using only the Nl pixels for which I ≤ 〈I〉. As
a robust estimator we have chosen to use the Median Absolute
Deviation (MAD) from the mode 〈I〉 applied to the left wing of
the distribution:

MADl = median{| I − 〈I〉 | I ≤ 〈I〉}· (13)

We note that the use of the standard deviation instead of MAD
has the effect of over-estimating the noise in the real cases. In
fact, the lower tail of the intensity distribution is always af-
fected by defects like bad pixels and possible vignetting. While
this fact has a rather strong influence on the standard deviation,
it leaves the MAD unperturbed, which is much less sensitive to
the presence of outliers.
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Fig. 5. Relative errors on the mode estimate as a function of the sky
background (upper panel) and the relative bin size (lower panel). The
circles represent the measured RMS deviations, while the dotted line
indicates the expected RMS (see Eq. (12)). In both panels, the crosses
indicate the maximum deviation encountered during the simulations,
while the dashed line traces the 5σ level. Simulations were performed
using S NRm = 120 and RON = 6 electrons.

One can easily show that for a Gaussian distribution the
ratio between the standard deviation and the MAD is ∼1.483
(Huber 1981). Hence, to have an estimator which has the same
meaning of the standard deviation in the normal case 2, we de-
fine σl = 1.483 MADl. This allows one to compare directly σp

and σl which, for an uncontaminated distribution, should be
approximately the same. To quantify possible deviations from
the Poissonian behaviour, we introduce the parameter ∆:

∆ =

√
σ2

l − RON2 − σp

σp
(14)

which equals 0 in the Poissonian case, whilst it gets larger and
larger as the deviation from the Poissonian distribution grows.
The idea is to try to estimate the unknown systematic error
from ∆, which is a measurable parameter. To illustrate this con-
cept we use a real example, where we have performed the anal-
ysis on a 300 × 300 px sub-window centred on the outer parts
of the large spiral galaxy NGC 3521, as shown in Fig. 6. The
corresponding intensity distribution is shown in Fig. 7, where
the mode (indicated by the vertical dashed line) was computed
with the Optimal Binning Technique (OBT) we have described
in Sect. 3.

2 In fact, since the central value 〈I〉 of the intensity distributions
we are dealing with is always larger than several hundred counts, the
noise Poissonian distribution can be very well approximated with a
Gaussian with σ =

√〈I〉.

Fig. 6. An image of NGC 3521 obtained by FORS1 on 04-04-2000
(R, 30 seconds, standard resolution collimator). The box indicates the
test sub-window used for the example described in the text. It includes
300 × 300 pixels, which correspond to 1′ × 1′ on the sky.

A superficial inspection of the input image shows already
that this sub-window is strongly contaminated by diffuse emis-
sion from the galaxy’s spiral arms. The mode of the intensity
distribution is in fact ∼34% higher than the background level
manually measured on an object-free area of the same image
close to the upper left corner. However, the presence of strong
fluctuations within the sub-windows produces a significant in-
crease in the distribution core width, which becomes ∼80%
larger than the expected photon shot noise (∆ = 0.78). This
suggests that ∆ may provide a tool to estimate the systematic
error induced by contaminating sources and this, coupled with
some threshold criterion, would allow us to recognise and dis-
regard the critical cases. To study this possibility, we have ex-
ecuted a series of simulations of contaminated distributions of
the same type of those described in Sect. 3.2 for several values
of the input sky background intensity I sky. For each simulation
one can then compute the error ε of the mode estimate (see
Eq. (10)) and measure ∆. The resulting range in the ∆ param-
eter can be binned to some suitable value and the correspond-
ing average error 〈ε〉 computed. In Fig. 8 we have plotted the
results one obtains for three different values of the sky back-
ground, i.e. 102, 103 and 104 electrons. The circles represent
〈ε〉, while the dashed and dotted lines indicate two different
estimates of the random error σ〈I〉; one is the RMS deviation
directly computed from the simulated data and the other is esti-
mated using Eq. (11). While the systematic error is clearly due
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Fig. 7. Intensity distribution for the sub-window placed on a outer re-
gion of NGC 3521 (see Fig. 6). The vertical lines are placed at the dis-
tribution mode (dashed) and the real sky background (dashed-dotted).
The latter was manually measured in the upper left corner of the input
image, in an object-free area. The solid and dotted lines plotted on the
left side of the distribution are two Gaussians with σ = σp and σ = σl

respectively. The figure insert shows an intensity contour plot of the
region.

to the presence of contaminating objects, the random error σ 〈I〉
is related to the accuracy of the method one adopts to estimate
the mode 〈I〉 (see Sect. 3).

A clear result emerges from Fig. 8: the ∆ parameter is ef-
fective in estimating the systematic error and hence gives a sta-
tistically significant criterion to decide whether a sub-window
can be considered as unperturbed or not. In order to have a sim-
ple description of the behaviour of 〈ε〉 as a function of ∆, we
have performed a linear fitting of the simulated results in the
range 0 ≤ ∆ ≤ 10 (see Fig. 8, continuous lines). Actually 〈ε〉
tends to bend for larger values of ∆ and this has the effect that
our linear fitting slightly overestimates the value of 〈ε〉. This is
not a problem, since in this sense the criterion we are going to
establish is just more restrictive. As expected, the slope of the
∆, 〈ε〉 relation is inversely proportional to the signal-to-noise
ratio of the sky background. The best fit gives the following
result:

〈ε〉 = 3.3√
Isky

(∆ + 0.96) (15)

where Isky is given in electrons and ∆, ε are expressed as per-
centage values. The fact that for ∆ = 0 〈ε〉 � 0 is due to the
following effect. When the sky background is contaminated by
faint stars, whose maximum intensity is comparable to

√
Isky,

the mode and the width of the intensity distribution increase in
such a way that ∆ tends to be small, while the effective error
is not.

Fig. 8. Errors on the estimated sky background Isky as a function of ∆
(see text) from numerical simulations for three different sky back-
ground levels (102, 103 and 104 electrons). The continuous lines rep-
resent linear least squares fits in the range 0 ≤ ∆ ≤ 10, while the
circles are the average (systematic) errors. Each point is the result of
5000 simulations. The dashed and dotted lines indicate the RMS ran-
dom errors computed from the simulations and Eq. (11) (Neff = 1000)
respectively. The horizontal dotted line is placed at εmax = 1%.

We can now use the total maximum error εmax to fix a limit
on ∆ below which we can consider a given intensity distribu-
tions as practically unperturbed. Since the distribution of ran-
dom errors around the systematic deviation is Gaussian, we can
conservatively assume εmax 
| 〈ε〉 | +3σ〈I〉. Using Eq. (15) for
∆ one gets

∆max = 0.9
√〈I〉 [

εmax

3
− σ〈I〉

]
− 0.96 (16)

where σ〈I〉 is given by the adopted mode estimator. As it is
shown in Sect. 3, this can be approximated by Eq. (11) with
Neff = 1000, which gives the following expression:

∆max =

√〈I〉
3.3

εmax − 1.9. (17)

The critical value for ∆ depends of course on the accuracy one
wants to reach in the estimate of the background intensity. For
a typical value of εmax = 1%, ∆max is 1.1, 7.7 and 28.4% for sky
levels of 102, 103 and 104 electrons respectively.

Once all sub-windows in an input image have been anal-
ysed with the criterion we have just discussed, a first sky bright-
ness guess can be obtained using the median of all selected val-
ues. This has the effect of excluding cases like those produced
by occulting masks inserted in the focal plane. In fact, to avoid
strong saturation effects, FORS instruments allow the user to
place a number of movable blades on specific positions of the
focal plane. The height of these blades is about 20 ′′, which
correspond to 100 px when the SR collimator is used. When
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the occulted regions are larger than the adopted sub-window
size, there is a chance that such areas pass the ∆-test. Since
the counts in those regions are very low, the median always re-
moves them successfully, provided that the occulted fraction of
the field of view is not larger than 50%, a condition which is
always fulfilled.

After this selection is done, the only background fluctu-
ations which are expected to be left in the remaining sub-
windows are due to a non perfect flat-fielding. In fact, the use
of twilight flats introduces large scale gradients, which produce
maximum peak-to-peak deviations of 6% from perfect flatness
(see also next section). For this reason, we have decided to op-
erate a further refinement, choosing only those n g sub-windows
which deviate less than 3% from the median value. The final es-
timate of the background intensity I sky is eventually obtained
computing the weighted mean Isky =

∑ng
j=1〈I〉 j w j/

∑ng
j=1 w j,

(w j = 1/σ2
〈I〉). To allow for a statistically significant result, we

have imposed that ng ≥5 in our automatic procedures. If this
condition is not met, then the input frame is considered as un-
suitable for sky background measures and rejected. This has
the effect of operating a first rough filtering on the input data.
To be conservative, ng is logged together with the other rele-
vant parameters, and a further and more restrictive selection is
always possible.

Intensive tests with real data, as discussed in the next sec-
tion, have shown that the set of selection criteria we have dis-
cussed make the method reliable, robust and suitable to be im-
plemented in a fully automatic procedure.

5. Testing the method on real data

The method we have just outlined has been tested on a sample
of 4678 FORS1 reduced frames, obtained with different filters
between April 1, 2000 and September 30, 2001. For each in-
put frame the results relative to all 36 sub-windows have been
logged and this has allowed us to build-up a sample with more
than 168 000 entries, each of which has been flagged accord-
ing to the results of the ∆-test. The basic results are shown in
Fig. 9, where we have plotted the measured noise (corrected
for the read-out noise) as a function of the expected Poissonian
noise. The solid line traces the locus where the two noises have
the same value, while the dashed one indicates the limit on the
measured noise imposed by Eq. (17). All sub-windows lying
below the latter line would be selected for sky background es-
timates.

The fraction of selected windows is plotted in the upper
panel of the same figure, again as a function of the expected
noise. As one can see, for noise values of less than 20 elec-
trons (or background intensities smaller than ∼400 electrons),
this fraction is very low. For larger intensities, it reaches a
roughly constant value of 80%. This means that basically all
frames with 〈I〉 ≤ 400 electrons will be rejected. In the adopted
test sample, this however accounts for 11% of total number of
frames only. From the test sample we can conclude that, on av-
erage, 86.5% of FORS1 frames are suitable for sky-background
measurements, 95% of which have ng ≥ 12.

An interesting feature visible in Fig. 9 is the systematic
trend shown by the minimum measured noise. In fact, this tends

Fig. 9. Comparison between the expected and measured noises on a
sample of more than 4600 FORS1 images. Each point refers to a sin-
gle sub-window. The solid line indicates the locus where the expected
noise equals the measured one, while the dashed line traces the limit
set by Eq. (17). The dashed-dotted line indicates the expected global
noise generated by the photon statistics and the flat-fielding correction
for a typical FORS1 configuration (see text for more details). The up-
per panel shows the fraction of sub-windows which passed the ∆-test
as a function of the expected noise.

to deviate more and more from the expected Poissonian noise
for background values larger than ∼10 4 electrons. This effect is
explained by the following considerations. FORS1 master sky
flat-fields are usually obtained by the combination of NF = 3
twilight sky flats, which have typical exposure levels of IF ∼
3.5× 104 electrons. The resulting noise on the combined frame
is usually negligible with respect to the noise present in the
science frame to be corrected. When the background exposure
level reaches high values, this is no longer true and the noise
added by the flat-fielding process becomes significant. The ex-
pected global noise is in fact given by σ2 = σ2

p + I2
sky/(NF IF),

where Isky is the background level in the input science frame.
This law gives a fair reproduction of the observed behaviour,
as it is shown in Fig. 9 (dashed-dotted line), where we have
used the typical values of IF and NF quoted above. The few
data points lying below this line are generated by observations
obtained with the low gain mode (∼0.3 ADU electron−1), for
which IF is about a factor of 2 larger than in the high gain
mode (∼0.6 ADU electron−1) , which is also the standard for
FORS1 imaging. In principle, when computing ∆, one could
correct the measured noise for the flat-fielding effect. In prac-
tice, at an exposure level of 5 × 104 electrons the correction on
the measured noise is of the order of 20% and hence a very
small number of sub-windows which are rejected by the ∆ cri-
terion would move to the safe region (see Fig. 9). Furthermore,
90% of all sub-windows included in the test sample have
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Fig. 10. Maximum deviations from the sky background weighted
mean in all frames which passed the ∆-test. Solid line indicates the
data from all sub-windows, the dotted line refers to the selected win-
dows and the dashed line corresponds to the cases where ng = 36. The
upper right insert shows the cumulative functions with the same line
codings.

a background intensity smaller than 2 × 104 electrons. At this
level, the correction amounts to about 10% only. For this reason
we have decided to ignore the flat-fielding effect when evaluat-
ing the deviation from the pure Poissonian noise.

As we have mentioned (see also Sect. 3 for more details),
the maximum formal errors on the mode estimate within the
sub-windows are always smaller than 1%. Therefore it is clear
that the major contribution to the uncertainty on the final back-
ground estimate is due to the non perfect flat-fielding, which
introduces smooth large scale gradients in the reduced images.
Due to the systematic nature of the effect, it does not make any
statistical sense to adopt the formal error on the weighted mean
to estimate this uncertainty and for this reason we have pre-
ferred to use the maximum deviation δ sky measured in the ng
selected windows. Of course, when ng � 36 and all the ac-
cepted sub-windows are concentrated in a portion of the frame,
the use of δsky can lead to an error underestimate. In the case of
our test sample, this effect is present for ng � 10, where the es-
timated error is a factor of two smaller than for larger n g values.
Since the large majority of our data had ng > 12, this does not
affect significantly our error estimates. This effect can be any-
way reduced adopting larger values for the minimum number
of sub-windows that must survive the ∆-test.

The results produced by applying our method to the test
sample are shown in Fig. 10, where we present the distribu-
tion of δsky derived from the 4045 images which passed the
∆-test. The solid line refers to the results one obtains using all
windows which passed the ∆-test, while the dotted line corre-
sponds to the values obtained from the ng selected windows

only. While the latter by definition drops to 0 at δ sky = 3%,
the former shows also the deviating cases at larger δ sky which
are, however, less than 3% of total. We emphasise that 20% of
the measurements have δsky ≤ 1%, while this fraction grows to
77.5% for δsky ≤ 2%. The median value in the whole sample
is 1.5%, which can be regarded as the typical maximum error
in our measurements. It is finally interesting to note that the
maximum error distribution one obtains using only those cases
where all sub-windows are used for the final estimate (ng = 36,
1594 images, 39.5% of total) is not very different from the one
which corresponds to the general case (Fig. 10, dashed line).
Since the images for which all 36 sub-windows are selected are
bona fide not affected by significant contamination, this con-
firms that the δsky distribution we observe is really due to large
scale gradients and not to contaminated sub-windows which
escaped the ∆-test.

The efficiency of the method in recognising critical cases
has been checked directly, with a visual inspection of a large
number of cases included in the test sample. The conclusion is
that the method is reliable and does not lead to artificial over-
estimates of the sky background. As an example of these capa-
bilities, in Fig. 11 we present a critical case drawn from our data
sample: an R-band image of interacting galaxies. The boxes
indicate the sub-windows which have passed the ∆-test and
which would be used for the first estimate. The lowest contour
was traced at the 5 sigma level of the sky background (manually
measured on a star-free area in the right upper corner). All se-
lected sub-windows lie outside this contour, which reasonably
defines the region where the galaxies certainly contribute to the
background. As a matter of fact, there is a gradient within the
accepted sub-windows, but the peak-to-peak difference is about
3% only, a value which is still consistent with the flat-fielding
accuracy. As expected, all critical regions are disregarded. The
final sky brightness is computed using the weighted mean on
23 sub-windows. It is interesting to note that even though some
sub-windows include outer parts of the galaxies, the back-
ground value computed using our algorithm is fully consistent
with that of visually selected object-free regions.

6. Conclusions

In this paper we have presented a numerical algorithm to es-
timate the sky background in CCD imaging data. Due to the
practical purpose this technique was designed for, we have op-
timized its implementation for FORS1; however, the algorithm
is based on very general assumptions and it can be used for any
CCD imager with a sufficiently wide field of view (≥5′ × 5′).

The fulfilment of this requirement, coupled to the large size
of the detectors currently available, allows one to estimate the
mode of the image intensity distribution directly from its his-
togram, with a typical accuracy of 1% or better (Sect. 3). In
order to identify suitable regions within the image, the analy-
sis is performed in smaller sub-windows which, in the case of
FORS1, have a size of 1′ × 1′ and include 9 × 104 pixels. The
possible presence of contaminating objects within these areas
is detected studying the shape of the intensity distribution.

The criterion to reject such regions from the final sky back-
ground estimate, that we have indicated as ∆-test, has been
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Fig. 11. An example of a critical case: a group of interacting galax-
ies. The original 660 seconds image was taken in the R band on
03-05-2000, using the SR collimator (0′′.2 pixel−1). The lowest con-
tour was set at a 5 sigma level above the minimum sky background
(measured in the upper right corner). Marked boxes indicate the sub-
windows which were automatically judged as suitable for sky back-
ground determination according to our method; the number in each
box shows the estimated sky background in electrons. The strip on the
right side is a satellite trail.

established via numerical simulations and it is based on the
effects that perturbing objects have on the left wing of the local
intensity distribution (Sect. 4).

The method has been designed to be robust and reliable
under a large variety of conditions. The tests have shown that it
can be safely used in fully automatic procedures (Sect. 5) and
therefore it is suitable for processing large data volumes. The
tests on real images have also shown that the final accuracy is
determined mostly by the flat-fielding quality on large scales.
In the specific case of FORS1 this is typically of the order of
2−3% (peak-to-peak) across the whole field of view. This sets
a lower limit for the study of night sky brightness variations on
the arcminutes scale, since they cannot be disentangled from
those artificially induced by the flat-fielding process.

As far as the contribution of faint stars to the sky back-
ground is concerned, the simulations show that our algorithm
is undisturbed by the presence of stellar objects with peak in-
tensity I∗ ≥ 5σp. In the case of sky background dominated im-
ages, the magnitude of those sources is given by the following
expression:

mf = m0 − 2.5 log

[
5.7

FWHM2

p2

]
− 1.25 log

[ rsky

t

]
(18)

where m0 is the photometric zero point in a given passband, p
is the pixel scale (in arcsec px−1), rsky is the sky background
rate (in e− s−1), t is the exposure time (in seconds) and FWHM
is the seeing (in arcsec). For example, FORS1 V frames ob-
tained through the SR collimator (p = 0.2 arcsec px−1) be-
come sky background dominated in about 25 seconds (see Patat
2003). With this exposure time, a seeing of 1 ′′ and the typical
FORS1 zero point in the V passband (m0 
 28), Eq. (18) gives
mf ∼ 22.8, which is about 10 magnitudes fainter than the value
for typical photoelectric sky brightness surveys (Walker 1988).
Such faint objects contribute to less than 1% to the total bright-
ness (Roach & Gordon 1973) and therefore we can conclude
that our method is practically free from being biased by the
inclusion of faint foreground point sources.

Finally, to asses the speed performance of our algorithm,
we have compiled and executed a C coded version on a mod-
erately fast Linux PC (Penthium III 500 MHz, 256 MB RAM).
On such a machine, the analysis of a 2048 × 2048 px image
requires less than 6 seconds, making it suitable for on-line pro-
cessing.

The method we have presented here has been extensively
used in the ESO-Paranal night sky brightness survey, which
made use of more than 3900 UBVRI FORS1 frames collected
from April 2000 to September 2001. The results are presented
and discussed in Patat (2003).
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